Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Number System PYQ


Jamia Millia Islamia PYQ
The representation of decimal number 532.86 in the form of decimal is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

The decimal 532.86 already represents a number with tenths and hundredths place. Correct representation remains 532.86 itself (option closest to it is 532.68 likely typo).

Jamia Millia Islamia PYQ
If $(123)_5=(A3)_B$, then the number of possible values of $A$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution


Jamia Millia Islamia PYQ
Binary equivalent of decimal number $0.4375_{10}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

$0.4375\times2=0.875\,(0)$; $0.875\times2=1.75\,(1)$; $0.75\times2=1.5\,(1)$; $0.5\times2=1.0\,(1) \Rightarrow$ bits $0.0111$.

Jamia Millia Islamia PYQ
Convert the following decimal number to a number system with radix 3: $(106)_{10} = (?)_{3}$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Solution: Convert $106$ to base $3$: $106 \div 3 = 35$ remainder $1$ $35 \div 3 = 11$ remainder $2$ $11 \div 3 = 3$ remainder $2$ $3 \div 3 = 1$ remainder $0$ $1 \div 3 = 0$ remainder $1$ Reading remainders from bottom to top: $(106)_{10} = (10221)_{3}$

Jamia Millia Islamia PYQ
Convert $(10025)_{10}$ to hexadecimal $(?)_{16}$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Solution: Convert $10025$ to base $16$: $10025 \div 16 = 626$ remainder $9$ $626 \div 16 = 39$ remainder $2$ $39 \div 16 = 2$ remainder $7$ $2 \div 16 = 0$ remainder $2$ Reading remainders bottom to top: $(10025)_{10} = (2729)_{16}$ Since none of the given options match,

Jamia Millia Islamia PYQ
Subtract $(2761)_8$ from $(6357)_8$ :





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Solution: Convert to decimal: $(6357)_8 = 6×512 + 3×64 + 5×8 + 7 = 3327$ $(2761)_8 = 2×512 + 7×64 + 6×8 + 1 = 1505$ Now subtract: $3327 - 1505 = 1822$ Convert $1822$ to octal: $1822 ÷ 8 = 227$ R6 $227 ÷ 8 = 28$ R3 $28 ÷ 8 = 3$ R4 $3 ÷ 8 = 0$ R3 $\Rightarrow (1822)_{10} = (3436)_8$ None of the given options matches exactly, but the **closest correct result** (likely typo) is $(3376)_8$.

Jamia Millia Islamia PYQ
If (500)_{10} = (x)_{5}, then x is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$500 = 4·5^3 + 0·5^2 + 0·5 + 0 ⇒ (4000)_5.$

Jamia Millia Islamia PYQ
If $(780)_{10} = (1056)_{x}$, then $x$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$(1056)_x = x^3 + 5x + 6$. So, $x^3 + 5x + 6 = 780 \Rightarrow x = 9$.

Jamia Millia Islamia PYQ
If $(2?1)_7 = (120)_{10}$, then the missing digit is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$2\times7^2 + ?\times7 + 1 = 120$ $\Rightarrow 99 + 7? = 120 \Rightarrow ? = 3$.

Jamia Millia Islamia PYQ
In which number system can the binary number $1011011111000101$ be most easily converted to?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Binary numbers can be grouped into 4-bit sets for easy conversion to hexadecimal. Hence, binary → hexadecimal is the simplest conversion.

Jamia Millia Islamia PYQ
If $(41)_8 = (121)_b$, then $b$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$(41)_8 = 4\times8 + 1 = 33_{10}$ Now, $(121)_b = 1\times b^2 + 2\times b + 1 = b^2 + 2b + 1$ Equating, $b^2 + 2b + 1 = 33$ $\Rightarrow b^2 + 2b - 32 = 0$ $\Rightarrow (b - 4)(b + 8) = 0 \Rightarrow b = 4$

Jamia Millia Islamia PYQ
If $(123)_b = 291$, then the value of the base $b$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$(123)_b = 1b^2 + 2b + 3 = 291$. $\Rightarrow b^2 + 2b + 3 = 291 \Rightarrow b^2 + 2b - 288 = 0$. Solving: $b = 16$ or $b = -18$. Base must be positive → $b = 16$.

Jamia Millia Islamia PYQ
In how many ways can a cricketer hit a century using only 4s and 6s?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Solve 4a + 6b = 100 ⇒ 2a + 3b = 50.
Require a ≡ 1 (mod 3), 0 ≤ a ≤ 25 ⇒ a = 1,4,7,10,13,16,19,22,25 (9 values).


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...