Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Maxima And Minima PYQ


Jamia Millia Islamia PYQ
Maximum value of $\left(\dfrac{1}{x}\right)^x$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Let $\displaystyle y = \left(\dfrac{1}{x}\right)^x = e^{x\ln(1/x)} = e^{-x\ln x}$ Take $\ln$ on both sides: $\ln y = -x\ln x$ Differentiate w.r.t $x$: $\dfrac{1}{y}\dfrac{dy}{dx} = -(\ln x + 1)$ $\Rightarrow \dfrac{dy}{dx} = -y(\ln x + 1)$ For maximum or minimum, set $\dfrac{dy}{dx}=0$: $\ln x + 1 = 0 \Rightarrow x = \dfrac{1}{e}$ Now, $y_{\max} = \left(\dfrac{1}{1/e}\right)^{1/e} = e^{1/e}$

Jamia Millia Islamia PYQ
Minimum value of $a^{x} + \dfrac{a}{a^{a x}}$ (where $a > 0$, $a \neq 1$, and $x \in \mathbb{R}$) is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

**Solution:** Let $y = a^{x} + \dfrac{a}{a^{a x}} = a^{x} + a^{1 - a x}$ Let $t = a^{x}$, $t > 0$. Then $y = t + \dfrac{a}{t^{a}}$ Differentiate: \[ \dfrac{dy}{dt} = 1 - a^2 t^{-a-1} = 0 \Rightarrow t^{a+1} = a^2 \Rightarrow t = a^{\tfrac{2}{a+1}}. \] Substitute back: \[ y_{\min} = a^{\tfrac{2}{a+1}} + a^{1 - a\tfrac{2}{a+1}} = 2\sqrt{a}. \] $\boxed{\text{Answer: (A) }2\sqrt{a}}$

Jamia Millia Islamia PYQ
The absolute maximum value of $y = x^3 - 3x + 2$ in $0 \le x \le 2$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$y' = 3x^2 - 3 = 0 \Rightarrow x = 1$ Now, $y(0) = 2$, $y(1) = 0$, $y(2) = 8 - 6 + 2 = 4$ Hence, maximum value = 4.

Jamia Millia Islamia PYQ
The points of extremum of the function $f(x) = \displaystyle \int_0^x e^{t^2} (1 - t^2)\,dt$ are:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$f'(x) = e^{x^2}(1 - x^2)$. Setting $f'(x) = 0 \Rightarrow 1 - x^2 = 0 \Rightarrow x = \pm 1$.

Jamia Millia Islamia PYQ
If $y = a\log|x| + bx^2 + x$ has extreme values at $x=-1$ and $x=-2$, then





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

From $y'=a/x + 2bx + 1=0$ → solving gives $a=2,\ b=-\tfrac{1}{2}$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...