Let
$\displaystyle y = \left(\dfrac{1}{x}\right)^x = e^{x\ln(1/x)} = e^{-x\ln x}$
Take $\ln$ on both sides:
$\ln y = -x\ln x$
Differentiate w.r.t $x$:
$\dfrac{1}{y}\dfrac{dy}{dx} = -(\ln x + 1)$
$\Rightarrow \dfrac{dy}{dx} = -y(\ln x + 1)$
For maximum or minimum, set $\dfrac{dy}{dx}=0$:
$\ln x + 1 = 0 \Rightarrow x = \dfrac{1}{e}$
Now,
$y_{\max} = \left(\dfrac{1}{1/e}\right)^{1/e} = e^{1/e}$