Qus : 5
Jamia Millia Islamia PYQ
2
The system of linear equations is:
$a + 2b + 3c = 7$
$2a + 4b + c = 12$
$3a + 6b + 4c = 20$
1
has a unique solution 2
has no solution 3
has infinite number of solutions 4
has two solutions Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ
Solution We can write the augmented matrix as:
$\begin{bmatrix}
1 & 2 & 3 & | & 7 \\
2 & 4 & 1 & | & 12 \\
3 & 6 & 4 & | & 20
\end{bmatrix}$
Perform the following operations:
$R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 3R_1$
$\Rightarrow
\begin{bmatrix}
1 & 2 & 3 & | & 7 \\
0 & 0 & -5 & | & -2 \\
0 & 0 & -5 & | & -1
\end{bmatrix}$
Now subtract $R_3 - R_2$:
$\Rightarrow
\begin{bmatrix}
0 & 0 & 0 & | & 1
\end{bmatrix}$
This represents an inconsistent equation $0 = 1$.
Hence, the system **has no solution.**
Qus : 6
Jamia Millia Islamia PYQ
3
$Q30.$ If the rank of the matrix
\[
\begin{bmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{bmatrix}
\]
is $2$, then find the correct condition.
1
$abc\neq 0$ 2
$a\neq 0, bc=0$ 3
$ab\neq 0, c=0$ 4
$a\neq 0, b\neq 0, c\neq 0$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ
Solution For a diagonal matrix, the rank equals the number of non-zero diagonal elements.
If the rank is $2$, exactly two of $a, b, c$ must be non-zero and one must be zero.
Thus, the possible condition is
$ab \neq 0,\; c = 0$.
Qus : 14
Jamia Millia Islamia PYQ
1
If $A = \begin{bmatrix} 3 & -9 \\ -12 & 6 \end{bmatrix}$,
then $\operatorname{adj}(3A + 12A^2)$ is equal to:
1
$\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$
2
$\begin{bmatrix} 63 & -72 \\ -84 & 51 \end{bmatrix}$ 3
$\begin{bmatrix} 81 & -84 \\ -63 & 72 \end{bmatrix}$ 4
$\begin{bmatrix} 72 & -84 \\ -84 & 51 \end{bmatrix}$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution $A^2 = \begin{bmatrix} 3 & -9 \\ -12 & 6 \end{bmatrix}^2 =
\begin{bmatrix} 3^2 + (-9)(-12) & 3(-9) + (-9)(6) \\
(-12)(3) + 6(-12) & (-12)(-9) + 6^2 \end{bmatrix}
= \begin{bmatrix} 135 & -81 \\ -108 & 126 \end{bmatrix}$
Then $3A + 12A^2 = 3\begin{bmatrix} 3 & -9 \\ -12 & 6 \end{bmatrix}
+ 12\begin{bmatrix} 135 & -81 \\ -108 & 126 \end{bmatrix}
= \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$
Hence, $\operatorname{adj}(3A + 12A^2)$ = same matrix (since 2×2 case).
[{"qus_id":"13515","year":"2024"},{"qus_id":"13516","year":"2024"},{"qus_id":"13517","year":"2024"},{"qus_id":"13519","year":"2024"},{"qus_id":"13629","year":"2023"},{"qus_id":"13630","year":"2023"},{"qus_id":"13631","year":"2023"},{"qus_id":"13632","year":"2023"},{"qus_id":"13739","year":"2022"},{"qus_id":"13856","year":"2021"},{"qus_id":"13882","year":"2021"},{"qus_id":"13982","year":"2020"},{"qus_id":"14052","year":"2019"},{"qus_id":"14053","year":"2019"},{"qus_id":"14074","year":"2019"},{"qus_id":"15087","year":"2018"},{"qus_id":"15088","year":"2018"},{"qus_id":"15091","year":"2018"}]