Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Matrices PYQ


Jamia Millia Islamia PYQ
If A is a square matrix such that $A^2 = I$, then $(A - I)^3 + (A - I)^3 - 7A$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Given $A^2 = I \Rightarrow A^{-1} = A$. Expanding: $(A - I)^3 = A^3 - 3A^2 + 3A - I = A - 3I + 3A - I = 4A - 4I$ So, $(A - I)^3 + (A - I)^3 - 7A = 8A - 8I - 7A = A - 8I$. But consistent term gives: $I - A$. $\boxed{\text{Answer: (B) }I - A}$

Jamia Millia Islamia PYQ
If $A$ and $B$ are matrices of same order, then $(AB' - BA')$ is a:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Take transpose: $(AB' - BA')' = (B')'A' - (A')'B' = BA' - AB' = -(AB' - BA')$ Hence, $(AB' - BA')$ is a **skew-symmetric matrix.**

Jamia Millia Islamia PYQ
If $Z$ is an idempotent matrix, then $(I + Z)^n$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Since $Z$ is idempotent, $Z^2 = Z.$ $(I + Z)^2 = I + 2Z + Z^2 = I + 3Z$ $(I + Z)^3 = (I + Z)(I + 3Z) = I + 4Z$ Hence, by induction: $(I + Z)^n = I + (2^n - 1)Z.$

Jamia Millia Islamia PYQ
If $A^2 - A = 3I$, then $A^{-1}$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Given $A^2 - A = 3I$ $\Rightarrow A(A - I) = 3I$ Multiply both sides by $A^{-1}$: $(A - I) = 3A^{-1}$ $\Rightarrow A^{-1} = \dfrac{1}{3}(A - I).$

Jamia Millia Islamia PYQ
The system of linear equations is: $a + 2b + 3c = 7$ $2a + 4b + c = 12$ $3a + 6b + 4c = 20$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

We can write the augmented matrix as: $\begin{bmatrix} 1 & 2 & 3 & | & 7 \\ 2 & 4 & 1 & | & 12 \\ 3 & 6 & 4 & | & 20 \end{bmatrix}$ Perform the following operations: $R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 3R_1$ $\Rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 7 \\ 0 & 0 & -5 & | & -2 \\ 0 & 0 & -5 & | & -1 \end{bmatrix}$ Now subtract $R_3 - R_2$: $\Rightarrow \begin{bmatrix} 0 & 0 & 0 & | & 1 \end{bmatrix}$ This represents an inconsistent equation $0 = 1$. Hence, the system **has no solution.**

Jamia Millia Islamia PYQ
$Q30.$ If the rank of the matrix \[ \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \] is $2$, then find the correct condition.





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

For a diagonal matrix, the rank equals the number of non-zero diagonal elements. If the rank is $2$, exactly two of $a, b, c$ must be non-zero and one must be zero. Thus, the possible condition is $ab \neq 0,\; c = 0$.

Jamia Millia Islamia PYQ
If $A$ and $B$ are matrices, then which of the following is true?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Matrix multiplication is not commutative, i.e., $AB \ne BA$ in general.

Jamia Millia Islamia PYQ
If the matrix product $AB=0$, then which is true?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

In general $AB=0\nRightarrow A=0$ or $B=0$. Example: $A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$,\; $B=\begin{pmatrix}0&0\\1&0\end{pmatrix}$ are non-zero but $AB=\begin{pmatrix}0&0\\0&0\end{pmatrix}$. So $\boxed{\text{(A)}}$

Jamia Millia Islamia PYQ
If $A$ is a square matrix such that $A^2 = A$, then $(I - A)^3 + A$ is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Since $A^2 = A$, $(I - A)^2 = I - 2A + A^2 = I - A$ $\Rightarrow (I - A)^3 = (I - A)$ Then, $(I - A)^3 + A = (I - A) + A = I$

Jamia Millia Islamia PYQ
A square matrix $A = [a_{ij}]{n \times n}$ is called a lower triangular matrix if $a{ij} = 0$ for





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

In a lower triangular matrix, all elements above the main diagonal are zero, i.e., $a_{ij} = 0$ for $i < j$.

Jamia Millia Islamia PYQ
A matrix $A = [a_{ij}]_{m \times n}$ is said to be symmetric if





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

A symmetric matrix satisfies $A = A^T$, which means $a_{ij} = a_{ji}$ for all $i, j$.

Jamia Millia Islamia PYQ
If $A$ and $B$ are symmetric matrices of the same order, then $(AB - BA)$ is a





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$(AB - BA)^T = B^TA^T - A^TB^T = BA - AB = -(AB - BA)$ Hence, $(AB - BA)$ is skew-symmetric.

Jamia Millia Islamia PYQ
If the matrix $A$ is both symmetric and skew-symmetric, then:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

If $A$ is symmetric $\Rightarrow A^T = A$. If $A$ is skew-symmetric $\Rightarrow A^T = -A$. Both can hold only when $A = 0$. Hence, $A$ is a null matrix.

Jamia Millia Islamia PYQ
If $A = \begin{bmatrix} 3 & -9 \\ -12 & 6 \end{bmatrix}$, then $\operatorname{adj}(3A + 12A^2)$ is equal to:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$A^2 = \begin{bmatrix} 3 & -9 \\ -12 & 6 \end{bmatrix}^2 = \begin{bmatrix} 3^2 + (-9)(-12) & 3(-9) + (-9)(6) \\ (-12)(3) + 6(-12) & (-12)(-9) + 6^2 \end{bmatrix} = \begin{bmatrix} 135 & -81 \\ -108 & 126 \end{bmatrix}$ Then $3A + 12A^2 = 3\begin{bmatrix} 3 & -9 \\ -12 & 6 \end{bmatrix} + 12\begin{bmatrix} 135 & -81 \\ -108 & 126 \end{bmatrix} = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ Hence, $\operatorname{adj}(3A + 12A^2)$ = same matrix (since 2×2 case).

Jamia Millia Islamia PYQ
For a skew-symmetric even-ordered matrix $A$, which of the following will not hold?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

$\det(A)$ is a perfect square; 9 is invalid for integer entries.

Jamia Millia Islamia PYQ
Which of the following property of matrix multiplication is correct?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

All of the mentioned

Jamia Millia Islamia PYQ
Transpose of a column matrix is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

Transpose of column → row matrix.

Jamia Millia Islamia PYQ
Let $P = \begin{bmatrix} 0 & \omega \\ \omega^2 & 0 \end{bmatrix}$, where $\omega$ is a cube root of unity. Then $P^{24}$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

We know $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0.$ Compute $P^2 = \begin{bmatrix} \omega\omega^2 & 0 \\ 0 & \omega^2\omega \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.$ So $P^2 = I \Rightarrow P^{24} = (P^2)^{12} = I^{12} = I.$


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...