Qus : 3
Jamia Millia Islamia PYQ
2
If $1,\ \log_{9}!\left(3^{,1-x}+2\right)$ and $\log_{3}!\left(4\cdot 3^{x}-1\right)$ are in A.P., then $x$ equals
1
$\log_{4}2$ 2
$1-\log_{3}4$ 3
$1-\log_{4}3$ 4
$\log_{4}3$ Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ
Solution A.P. $\Rightarrow 2\cdot\log_{9}(3^{1-x}+2)=1+\log_{3}(4\cdot 3^x-1)$.
Since $\log_{9}y=\dfrac12\log_{3}y$, we get
$\log_{3}(3^{1-x}+2)=1+\log_{3}(4\cdot 3^x-1)=\log_{3}!\big(3(4\cdot 3^x-1)\big)$.
Hence $3^{1-x}+2=12\cdot 3^{x}-3$. Put $t=3^x$: $\dfrac{3}{t}+2=12t-3$.
$\Rightarrow 12t^2-5t-3=0 \Rightarrow t=\dfrac{3}{4}$ (positive root).
So $3^x=\dfrac{3}{4}\Rightarrow x=\log_{3}!\left(\dfrac{3}{4}\right)=1-\log_{3}4$.
[{"qus_id":"13723","year":"2022"},{"qus_id":"14029","year":"2019"},{"qus_id":"14035","year":"2019"},{"qus_id":"15151","year":"2017"},{"qus_id":"15172","year":"2017"}]