Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Logarithms And Indices PYQ


Jamia Millia Islamia PYQ
For what value of $x$, the $\log_2(5·2^x+1)$, $\log_4(2^{1-x}+1)$, and 1 are in A.P.?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Let $a=\log_2(5·2^x+1)$, $b=\log_4(2^{1-x}+1)$, $c=1$ For A.P.: $2b=a+c$ Simplify using $\log_4 y = \frac{1}{2}\log_2 y$ After algebra → $x = 1 - \log_2 5$

Jamia Millia Islamia PYQ
Let n be a positive decimal integer. The number of digits in n is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

For any integer $n\ge1$, digits $= \lfloor\log_{10} n\rfloor+1$.

Jamia Millia Islamia PYQ
If $1,\ \log_{9}!\left(3^{,1-x}+2\right)$ and $\log_{3}!\left(4\cdot 3^{x}-1\right)$ are in A.P., then $x$ equals





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

A.P. $\Rightarrow 2\cdot\log_{9}(3^{1-x}+2)=1+\log_{3}(4\cdot 3^x-1)$. Since $\log_{9}y=\dfrac12\log_{3}y$, we get $\log_{3}(3^{1-x}+2)=1+\log_{3}(4\cdot 3^x-1)=\log_{3}!\big(3(4\cdot 3^x-1)\big)$. Hence $3^{1-x}+2=12\cdot 3^{x}-3$. Put $t=3^x$: $\dfrac{3}{t}+2=12t-3$. $\Rightarrow 12t^2-5t-3=0 \Rightarrow t=\dfrac{3}{4}$ (positive root). So $3^x=\dfrac{3}{4}\Rightarrow x=\log_{3}!\left(\dfrac{3}{4}\right)=1-\log_{3}4$.

Jamia Millia Islamia PYQ
The product of two binary numbers $00001101_2$ and $00001111_2$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$00001101_2 = 13_{10}$ $00001111_2 = 15_{10}$ Product in decimal $= 13 \times 15 = 195$ Now convert $195_{10}$ to binary: $195 = 128 + 64 + 3 = 11000011_2$

Jamia Millia Islamia PYQ
The remainder when $27^{40}$ is divided by $12$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

We use modulo properties: $27 \equiv 3 \pmod{12}$ $\Rightarrow 27^{40} \equiv 3^{40} \pmod{12}$ Now, $3^1 \equiv 3$, $3^2 \equiv 9$, $3^3 \equiv 3$, $3^4 \equiv 9$, pattern repeats every 2 powers. So, for even power $40$, remainder = $9$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...