Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Logarithmic Series PYQ


Jamia Millia Islamia PYQ
Find the number of solutions of the equation $4(x - 1) = \log_2(x - 3)$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Domain: $x - 3 > 0 \Rightarrow x > 3$ Let $f(x) = 4(x - 1)$ and $g(x) = \log_2(x - 3)$ For $x > 3$, $f(x)$ is linear and increasing rapidly, while $g(x)$ grows slowly. Graphically, they intersect once.

Jamia Millia Islamia PYQ
If $\log_{2}(5\cdot2^{x}+1),\ \log_{4}(2^{\,1-x}+1)$ and $1$ are in A.P., then $x$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

For A.P.: $2\log_{4}(2^{1-x}+1)=\log_{2}(5\cdot2^{x}+1)+1$. Since $\log_{4}y=\tfrac12\log_{2}y$, $\log_{2}(2^{1-x}+1)=\log_{2}\!\big(2(5\cdot2^{x}+1)\big)$. Thus $2^{1-x}+1=10\cdot2^{x}+2$. Let $t=2^{x}>0$. Then $\frac{2}{t}+1=10t+2 \Rightarrow 10t^{2}+t-2=0$. $t=\frac{-1+9}{20}=\frac{2}{5}$ (positive root). Hence $2^{x}=\frac{2}{5}$, so $x=\log_{2}\!\left(\frac{2}{5}\right)=1-\log_{2}5$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...