Domain: $x - 3 > 0 \Rightarrow x > 3$
Let $f(x) = 4(x - 1)$ and $g(x) = \log_2(x - 3)$
For $x > 3$, $f(x)$ is linear and increasing rapidly, while $g(x)$ grows slowly.
Graphically, they intersect once.
For A.P.: $2\log_{4}(2^{1-x}+1)=\log_{2}(5\cdot2^{x}+1)+1$.
Since $\log_{4}y=\tfrac12\log_{2}y$,
$\log_{2}(2^{1-x}+1)=\log_{2}\!\big(2(5\cdot2^{x}+1)\big)$.
Thus $2^{1-x}+1=10\cdot2^{x}+2$.
Let $t=2^{x}>0$. Then $\frac{2}{t}+1=10t+2 \Rightarrow 10t^{2}+t-2=0$.
$t=\frac{-1+9}{20}=\frac{2}{5}$ (positive root). Hence $2^{x}=\frac{2}{5}$,
so $x=\log_{2}\!\left(\frac{2}{5}\right)=1-\log_{2}5$.