Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Inverse Trigonometrical Function PYQ


Jamia Millia Islamia PYQ
Principal value of $\cos^{-1}(\cos 5)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

For the principal range $[0, \pi]$, $\cos^{-1}(\cos 5) = 2\pi - 5$.

Jamia Millia Islamia PYQ
If $y=\tan^{-1}\!\left(\dfrac{1+x}{1-x}\right)$, then $\dfrac{dy}{dx}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$y'=\dfrac{u'}{1+u^{2}}$, $u=\dfrac{1+x}{1-x}$. $u'=\dfrac{2}{(1-x)^2}$, $1+u^2=\dfrac{2(1+x^2)}{(1-x)^2}$. Hence $y'=\dfrac{1}{1+x^2}$.

Jamia Millia Islamia PYQ
If $y=\cos^{-1}x$ and $z=\sin^{-1}\!\sqrt{1-x^{2}}$, then $\dfrac{dy}{dz}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

For $x\in[-1,1]$, $\sqrt{1-x^2}=\sin(\cos^{-1}x)=\sin y$. Thus $z=\sin^{-1}(\sin y)$, so $z=y$ (up to piecewise sign); hence $\dfrac{dy}{dz}=1$.

Jamia Millia Islamia PYQ
Simplified form of $\cos^{-1}(4x^3 - 3x)$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$ Hence, if $x = \cos\theta$, then $\cos^{-1}(4x^3 - 3x) = \cos^{-1}(\cos 3\theta) = 3\cos^{-1}x$

Jamia Millia Islamia PYQ
$\tan^{-1}!\left(\dfrac{1}{2}\right) + \tan^{-1}!\left(\dfrac{1}{3}\right) =$





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$\tan^{-1}a + \tan^{-1}b = \tan^{-1}!\left(\dfrac{a + b}{1 - ab}\right)$ Here, $a = \dfrac{1}{2}$, $b = \dfrac{1}{3}$ $\Rightarrow \dfrac{a + b}{1 - ab} = \dfrac{\frac{5}{6}}{1 - \frac{1}{6}} = 1$ $\Rightarrow \tan^{-1}(1) = \dfrac{\pi}{4}$

Jamia Millia Islamia PYQ
$\sin(\tan^{-1}x)$, where $|x| < 1$, is equal to





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Let $\theta = \tan^{-1}x \Rightarrow \tan\theta = x$ In right triangle: opposite = $x$, adjacent = $1$ $\Rightarrow \sin\theta = \dfrac{x}{\sqrt{1 + x^2}}$


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...