Given $e^y = 1 + x^x$
Differentiate both sides:
$e^y \frac{dy}{dx} = x^x (\ln x + 1)$
$\Rightarrow \frac{dy}{dx} = \dfrac{x^x(\ln x + 1)}{e^y}$
Since $e^y = 1 + x^x$,
$\Rightarrow m = \dfrac{x^x(\ln x + 1)}{1 + x^x}$
For $x > 0$, this ratio always lies between $-2$ and $2$.