Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Differentiation PYQ


Jamia Millia Islamia PYQ
If $y=\log(\tan x)$, then $\dfrac{dy}{dx}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$y'=\dfrac{\sec^2 x}{\tan x}=\dfrac{1}{\sin x\cos x}=2\csc2x$.

Jamia Millia Islamia PYQ
If $y=e^{2x}$, then $\dfrac{d^{2}y}{dx^{2}}\cdot\dfrac{d^{2}x}{dy^{2}}$ equals …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

$\dfrac{d^{2}y}{dx^{2}}=4e^{2x}=4y$; $x=\tfrac12\ln y\Rightarrow \dfrac{d^{2}x}{dy^{2}}=-\dfrac{1}{2y^{2}}$. Product $=4y\cdot\left(-\dfrac{1}{2y^{2}}\right)=-\dfrac{2}{y}=-2e^{-2x}$.

Jamia Millia Islamia PYQ
For $y = \sin x + \cos x - 5a$, what is the value of $\dfrac{dy}{dx}$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

$\dfrac{dy}{dx} = \dfrac{d}{dx}(\sin x + \cos x - 5a)$ $= \cos x - \sin x.$

Jamia Millia Islamia PYQ
If $y = \tan^{-1}\!\left(\dfrac{1 + \tan x}{1 - \tan x}\right)$, then $\dfrac{dy}{dx}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

We know $\tan(2x) = \dfrac{2\tan x}{1 - \tan^2 x}$. Here, $\dfrac{1 + \tan x}{1 - \tan x} = \tan\!\left(\dfrac{\pi}{4} + x\right)$. So, $y = \tan^{-1}(\tan(\dfrac{\pi}{4} + x)) = \dfrac{\pi}{4} + x$. Hence, $\dfrac{dy}{dx} = 1$.

Jamia Millia Islamia PYQ
If $y = \log(\tan \theta)$, then $\dfrac{dy}{d\theta}$ is equal to …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$y=\log(\tan\theta)\ \Rightarrow\ \frac{dy}{d\theta} =\frac{1}{\tan\theta}\cdot\sec^{2}\theta =\frac{\sec^{2}\theta}{\tan\theta} =\frac{1}{\sin\theta\cos\theta} =\sec\theta\,\csc\theta.$

Jamia Millia Islamia PYQ
If $y = x + e^{x}$, then $\dfrac{dx}{dy}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$\dfrac{dy}{dx}=1+e^{x}\ \Rightarrow\ \dfrac{dx}{dy}=\dfrac{1}{1+e^{x}}$.

Jamia Millia Islamia PYQ
If $y=(x^{x})^{x}$, then $\dfrac{dy}{dx}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

$(x^{x})^{x}=x^{x^{2}}=e^{x^{2}\ln x}$. $\Rightarrow \dfrac{y'}{y}=2x\ln x+x\ \Rightarrow\ y'=y(x+2x\ln x)=xy+2xy\log x$.

Jamia Millia Islamia PYQ
If a determinant of order $3\times3$ is formed using numbers $1$ or $-1$, then the minimum value of the determinant is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Possible determinant values with elements $\pm1$ range from $-8$ to $+8$. For minimum, consider alternating signs pattern (Hadamard form): $\begin{vmatrix} 1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{vmatrix} = -4$.

Jamia Millia Islamia PYQ
If $m$ is the slope of tangent at any point on the curve $e^y = 1 + x^x$, then:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

Given $e^y = 1 + x^x$ Differentiate both sides: $e^y \frac{dy}{dx} = x^x (\ln x + 1)$ $\Rightarrow \frac{dy}{dx} = \dfrac{x^x(\ln x + 1)}{e^y}$ Since $e^y = 1 + x^x$, $\Rightarrow m = \dfrac{x^x(\ln x + 1)}{1 + x^x}$ For $x > 0$, this ratio always lies between $-2$ and $2$.


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...