Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Jamia Millia Islamia Previous Year Questions (PYQs)

Jamia Millia Islamia Binomial Theorem PYQ


Jamia Millia Islamia PYQ
The total number of terms in the expansion of $(x+a)^{100} + (x-a)^{100}$ after simplification is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

$(x+a)^{100} = \sum_{r=0}^{100} \binom{100}{r} x^{100-r}a^r$ $(x-a)^{100} = \sum_{r=0}^{100} \binom{100}{r} x^{100-r}(-a)^r$ Adding, odd powers of $a$ cancel and even powers remain. Even $r$: total even $r$ from 0 to 100 → 51 terms.

Jamia Millia Islamia PYQ
The middle term in the expansion of $\left(1 + \dfrac{1}{x^2}\right)\!\left(1 + x^2\right)^n$ is —





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2023 PYQ

Solution

Expand $\left(1 + x^2\right)^n = \sum_{k=0}^{n} {}^{n}C_{k}x^{2k}.$ Multiply by $\left(1 + \dfrac{1}{x^2}\right)$: $= \sum_{k=0}^{n} {}^{n}C_{k}x^{2k} + \sum_{k=0}^{n} {}^{n}C_{k}x^{2k-2}.$ To find middle term → powers of $x$ that are equal when $2k = 2n - (2k-2)$. Simplifying gives $k = n.$ So middle term = ${}^{2n}C_{n}.$

Jamia Millia Islamia PYQ
The sum of $(n+1)$ terms of the series $\dfrac{C_0}{2} - \dfrac{C_1}{3} + \dfrac{C_2}{4} - \dfrac{C_3}{5} + \dots$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2017 PYQ

Solution

Using binomial relation and telescoping pattern, the series reduces to $\dfrac{1}{(n+1)(n+2)}$

Jamia Millia Islamia PYQ
What will be the value of $(102)^5$?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Using binomial expansion: $(100 + 2)^5 = 100^5 + 5(100^4)(2) + 10(100^3)(2^2) + 10(100^2)(2^3) + 5(100)(2^4) + 2^5$ $= 10^{10} + 10^{8}(10) + 10^{6}(40) + 10^{4}(80) + 10^{2}(80) + 32$ $= 11040603032.$

Jamia Millia Islamia PYQ
What will be an approximation of $(0.99)^5$ using the first three terms of expansion?





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Using $(1 - x)^n \approx 1 - nx + \dfrac{n(n-1)}{2}x^2$ For $x = 0.01, n = 5$: $(1 - 0.01)^5 \approx 1 - 5(0.01) + 10(0.01)^2 = 1 - 0.05 + 0.001 = 0.951.$

Jamia Millia Islamia PYQ
The coefficient of the middle term in the binomial expansion of $(1 + ax)^4$ and of $(1 - ax)^6$ is the same, if $a$ is equal to...





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2020 PYQ

Solution

Middle term of $(1 + ax)^4$ ⇒ $\text{Coefficient} = \binom{4}{2} a^2 = 6a^2.$ Middle term of $(1 - ax)^6$ ⇒ $\text{Coefficient} = \binom{6}{3} (-a)^3 = -20a^3.$ Given equal ⇒ $6a^2 = 20a^3 \Rightarrow a = \dfrac{3}{10}.$ Since signs are opposite ⇒ $a = -\dfrac{3}{10}.$

Jamia Millia Islamia PYQ
The coefficient of $x^8 y^{10}$ in $(x + y)^{18}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

General term = ${}^{18}C_r x^{18-r} y^r$. We need $x^8 y^{10} \Rightarrow 18 - r = 8 \Rightarrow r = 10$. Coefficient = ${}^{18}C_{10}$.

Jamia Millia Islamia PYQ
The coefficient of $y$ in the expansion of $\left(y^2+\dfrac{c}{y}\right)^5$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

General term $T_k=\binom{5}{k}(y^2)^{5-k}\left(\dfrac{c}{y}\right)^k =\binom{5}{k}c^k\,y^{10-3k}$. For power of $y^1$: $10-3k=1\Rightarrow k=3$. Coefficient $=\binom{5}{3}c^3=10c^3$.

Jamia Millia Islamia PYQ
The coefficient of $x^4$ in expansion of $(1 + x + x^2 + x^3)^{11}$ is …





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MCA 2016 PYQ

Solution

We can write generating function $f(x) = (1 + x + x^2 + x^3)^{11}$. Coefficient of $x^4 =$ number of ways to get power 4 as sum of 11 terms each $0,1,2,3$. By multinomial expansion, coefficient of $x^4 = {}^{11}C_4 + 10{}^{11}C_3 + 6{}^{11}C_2 + {}^{11}C_1 = 990$.

Jamia Millia Islamia PYQ
In the expansion of $(1+x)^{50}$, the sum of coefficients of odd powers of $x$ is:





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2022 PYQ

Solution

Sum of odd coefficients $=\dfrac{(1+1)^{50}-(1-1)^{50}}{2} =\dfrac{2^{50}-0}{2}=2^{49}$.

Jamia Millia Islamia PYQ
The coefficient of the middle term in the expansion of $(2 + 3x)^4$ is





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

Total terms = $4 + 1 = 5$ Middle term = $\dfrac{5 + 1}{2} = 3^\text{rd}$ term $\text{T}_3 = \binom{4}{2} (2)^{2} (3x)^{2} = 6 \times 4 \times 9x^2 = 216x^2$ Coefficient = 216

Jamia Millia Islamia PYQ
If A and B are coefficients of $x^n$ in $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then $\dfrac{A}{B}$ equals





Go to Discussion

Jamia Millia Islamia Previous Year PYQ Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

$A = \binom{2n}{n},\ B = \binom{2n-1}{n} \Rightarrow \dfrac{A}{B} = 2.$


Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Jamia Millia Islamia


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...