Jamia Millia Islamia PYQ
1
The area of the region described by
$A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x \}$ is:
Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution
The region lies between the circle $x^2 + y^2 = 1$ and the parabola $y^2 = 1 - x$.
Converting parabola into standard form: $x = 1 - y^2$.
To find points of intersection, substitute $x = 1 - y^2$ in $x^2 + y^2 = 1$:
$(1 - y^2)^2 + y^2 = 1 \Rightarrow 1 - 2y^2 + y^4 + y^2 = 1 \Rightarrow y^2(y^2 - 1) = 0.$
$\Rightarrow y = 0, \pm 1.$
Required area (using symmetry about x-axis):
$A = 2 \int_{0}^{1} [\sqrt{1 - y^2} - (1 - y^2)] dy.$
Compute separately:
$\int_0^1 \sqrt{1 - y^2}dy = \dfrac{\pi}{4}$,
$\int_0^1 (1 - y^2)dy = \dfrac{2}{3}.$
Hence $A = 2\left(\dfrac{\pi}{4} - \dfrac{2}{3}\right) = \dfrac{\pi}{2} - \dfrac{4}{3}.$
Jamia Millia Islamia PYQ
1
The area bounded by the curves $y^2 = x$ and $x^2 = y$ is:
Go to Discussion
Jamia Millia Islamia Previous Year PYQ
Jamia Millia Islamia JAMIA MILLIA ISLAMIA MCA 2019 PYQ
Solution
Curves: $y^2 = x$ (right-opening parabola) and $x^2 = y$ (upward parabola).
Points of intersection: substitute $y = x^2$ into $y^2 = x$:
$(x^2)^2 = x \Rightarrow x^4 - x = 0 \Rightarrow x(x^3 - 1) = 0.$
$\Rightarrow x = 0, 1.$
Between $x = 0$ and $1$: upper curve is $y = \sqrt{x}$, lower is $y = x^2$.
Area $A = \int_0^1 (\sqrt{x} - x^2)\,dx
= \left[\dfrac{2}{3}x^{3/2} - \dfrac{x^3}{3}\right]_0^1
= \dfrac{2}{3} - \dfrac{1}{3} = \dfrac{1}{3}.$
[{"qus_id":"13532","year":"2024"},{"qus_id":"13878","year":"2021"},{"qus_id":"13945","year":"2020"},{"qus_id":"14106","year":"2019"},{"qus_id":"14072","year":"2019"},{"qus_id":"14075","year":"2019"}]