Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

output devices Previous Year Questions (PYQs)

output devices Maxima And Minima PYQ


output devices PYQ
Maximum value of $\left(\dfrac{1}{x}\right)^x$ is:





Go to Discussion

output devices Previous Year PYQ output devices JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

Let $\displaystyle y = \left(\dfrac{1}{x}\right)^x = e^{x\ln(1/x)} = e^{-x\ln x}$ Take $\ln$ on both sides: $\ln y = -x\ln x$ Differentiate w.r.t $x$: $\dfrac{1}{y}\dfrac{dy}{dx} = -(\ln x + 1)$ $\Rightarrow \dfrac{dy}{dx} = -y(\ln x + 1)$ For maximum or minimum, set $\dfrac{dy}{dx}=0$: $\ln x + 1 = 0 \Rightarrow x = \dfrac{1}{e}$ Now, $y_{\max} = \left(\dfrac{1}{1/e}\right)^{1/e} = e^{1/e}$

output devices PYQ
Minimum value of $a^{x} + \dfrac{a}{a^{a x}}$ (where $a > 0$, $a \neq 1$, and $x \in \mathbb{R}$) is:





Go to Discussion

output devices Previous Year PYQ output devices JAMIA MILLIA ISLAMIA MCA 2021 PYQ

Solution

**Solution:** Let $y = a^{x} + \dfrac{a}{a^{a x}} = a^{x} + a^{1 - a x}$ Let $t = a^{x}$, $t > 0$. Then $y = t + \dfrac{a}{t^{a}}$ Differentiate: \[ \dfrac{dy}{dt} = 1 - a^2 t^{-a-1} = 0 \Rightarrow t^{a+1} = a^2 \Rightarrow t = a^{\tfrac{2}{a+1}}. \] Substitute back: \[ y_{\min} = a^{\tfrac{2}{a+1}} + a^{1 - a\tfrac{2}{a+1}} = 2\sqrt{a}. \] $\boxed{\text{Answer: (A) }2\sqrt{a}}$

output devices PYQ
The absolute maximum value of $y = x^3 - 3x + 2$ in $0 \le x \le 2$ is





Go to Discussion

output devices Previous Year PYQ output devices JAMIA MILLIA ISLAMIA MCA 2024 PYQ

Solution

$y' = 3x^2 - 3 = 0 \Rightarrow x = 1$ Now, $y(0) = 2$, $y(1) = 0$, $y(2) = 8 - 6 + 2 = 4$ Hence, maximum value = 4.

output devices PYQ
The points of extremum of the function $f(x) = \displaystyle \int_0^x e^{t^2} (1 - t^2)\,dt$ are:





Go to Discussion

output devices Previous Year PYQ output devices JAMIA MILLIA ISLAMIA MCA 2019 PYQ

Solution

$f'(x) = e^{x^2}(1 - x^2)$. Setting $f'(x) = 0 \Rightarrow 1 - x^2 = 0 \Rightarrow x = \pm 1$.

output devices PYQ
If $y = a\log|x| + bx^2 + x$ has extreme values at $x=-1$ and $x=-2$, then





Go to Discussion

output devices Previous Year PYQ output devices JAMIA MILLIA ISLAMIA MCA 2018 PYQ

Solution

From $y'=a/x + 2bx + 1=0$ → solving gives $a=2,\ b=-\tfrac{1}{2}$.


output devices


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

output devices


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...