Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

AMU MCA Previous Year Questions (PYQs)

AMU MCA Vector PYQ


AMU MCA PYQ
The shortest distance from the point $(1,0,-2)$ to the plane $x+2y+z=4$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Distance formula:

$d=\frac{|ax_1+by_1+cz_1-d|}{\sqrt{a^2+b^2+c^2}}$

Plane: $x+2y+z-4=0$

$d=\frac{|1(1)+2(0)+1(-2)-4|}{\sqrt{1^2+2^2+1^2}}$

$=\frac{|1-2-4|}{\sqrt6}=\frac{5}{\sqrt6} =\frac{5\sqrt6}{6}$


AMU MCA PYQ
Two bodies of mass 100 g and 20 g are moving with velocities $(2\hat{i}-7\hat{j}+3\hat{k})$ cm/s and $(-10\hat{i}+35\hat{j}-3\hat{k})$ cm/s respectively. What is the velocity of centre of mass of this two body system?






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Velocity of centre of mass:

$\vec{V}=\frac{m_1\vec{v}_1+m_2\vec{v}_2}{m_1+m_2}$

$=\frac{100(2\hat{i}-7\hat{j}+3\hat{k})+20(-10\hat{i}+35\hat{j}-3\hat{k})}{120}$

$=\frac{(200-200)\hat{i}+(-700+700)\hat{j}+(300-60)\hat{k}}{120}$

$=\frac{240\hat{k}}{120}=2\hat{k}$


AMU MCA PYQ
If $\alpha, \beta, \gamma$ be the angles which a line subtends with the positive direction of coordinate axes, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ equals





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
If Laplace transform $L{F(x)}=\frac1{s}e^{-3s}$, then $L{e^{-x}F(3x)}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
If the centre of mass of three particles of masses 10, 20 and 30 gram be at the point $(1,-2,3)$, where should a fourth particle of 40 gram be placed so that the combined centre of mass may be $(1,1,1)$ ?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
Which of the following is a 2-dimensional subspace of $\mathbb{R}^3$?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

Set ${(0,x,z)}$ contains two independent parameters and satisfies subspace properties.

AMU MCA PYQ
If $U={(x,y)\in\mathbb R^2\mid y=mx}$ and $W={(x,y)\in\mathbb R^2\mid y=tx,\ t\ne m}$ Then $\dim(U+W)$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Both are distinct lines through origin. Their sum spans $\mathbb R^2$. So dimension = 2.

AMU MCA PYQ
Let $\mathbb{R}^3={(x,y,z)}$ and $W$ be the subspace generated by ${(1,2,-3)}$. Geometrically, $W$ represents





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Single vector span ⇒ line through origin Direction ratios: $1,2,-3$ Direction cosines: $\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{-3}{\sqrt{14}}$

AMU MCA PYQ
A particle of mass 2 kg is moving such that its position is given by $P(t)=5\hat{i}-2t^2\hat{j}$ Find angular momentum at $t=2$ sec about origin.





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Position at $t=2$:

$\vec{r}=5\hat{i}-8\hat{j}$

Velocity:

$\vec{v}=\frac{d\vec{r}}{dt}=-4t\hat{j}$

At $t=2$:

$\vec{v}=-8\hat{j}$

Momentum:

$\vec{p}=m\vec{v}=2(-8\hat{j})=-16\hat{j}$

Angular momentum:

$\vec{L}=\vec{r}\times\vec{p}$

$=(5\hat{i}-8\hat{j})\times(-16\hat{j})$

$= -80\hat{k}$

AMU MCA PYQ
If $A \cap B = {0}$, $\dim A = 2$, $\dim B = 1$ in 3D space, then





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

$\dim(A + B) = 2 + 1 - 0 = 3$ So $V = A + B$

AMU MCA PYQ
Let $V$ be a 3-dimensional vector space with $A$ and $B$ its subspaces of dimensions $2$ and $1$ respectively. If $A \cap B = {0}$, then





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

$\dim(A + B) = 2 + 1 - 0 = 3$ So $V = A + B$

AMU MCA PYQ
The direction cosines of the line which is equally inclined to the axes is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

If equally inclined then $l = m = n$

$l^2 + m^2 + n^2 = 1$

$3l^2 = 1$

$l = \pm\frac{1}{\sqrt{3}}$



AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...