Qus : 2
AMU MCA PYQ
1
Suppose random variable $X$ has possible values $1,2,3,\dots$ and $P(X=j)=\frac{1}{2^j}$, $j=1,2,3,\dots$ then $P(X \text{ is even})$ equals
1
$\frac{1}{3}$ 2
$\frac{2}{3}$ 3
1 4
$\frac{1}{2}$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution Even values: $2,4,6,\dots$
$P(\text{even})=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\dots$
$=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\dots$
This is geometric series:
$=\frac{1/4}{1-1/4}=\frac{1/4}{3/4}=\frac{1}{3}$
Qus : 5
AMU MCA PYQ
3
If $X$ is a discrete random variable taking positive integer values and possesses memory-less property, then the distribution of $X$
1
Binomial distribution 2
Poisson distribution 3
Geometric distribution 4
Hyper-geometric distribution Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution The only discrete distribution having memory-less property is the Geometric distribution.
Qus : 6
AMU MCA PYQ
1
If $X \sim N(\mu,\sigma^2)$, then
$Z^2=\left(\frac{X-\mu}{\sigma}\right)^2$ is a Chi-square variate with
1
1 degree of freedom 2
2 degrees of freedom 3
3 degrees of freedom 4
$n$ degrees of freedom Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$
Square of standard normal variable follows $\chi^2$ distribution with 1 d.f.
Qus : 8
AMU MCA PYQ
1
Let $X_1, X_2, \dots, X_n$ be independently and identically distributed
$N(\mu,\sigma^2)$. Which of the following is simple hypothesis under $H_0$?
1
$\mu=\mu_0,\; \sigma^2$ known 2
$\mu=\mu_0,\; \sigma^2$ unknown 3
$\mu \ge \mu_0,\; \sigma^2$ known 4
$\mu \ge \mu_0,\; \sigma^2$ unknown Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution A simple hypothesis completely specifies parameter(s).
Thus $\mu=\mu_0$ with $\sigma^2$ known is simple.
Qus : 9
AMU MCA PYQ
2
If the random variable $X$ has the density function
$f(x)=e^{x-2}$ for $x<2$, and $f(x)=0$ otherwise,
then the 75th percentile and third quartile is
1
$2+\ln\left(\frac{3}{4}\right)$ and $2+\ln\left(\frac{3}{4}\right)$ 2
$2+\ln\left(\frac{3}{4}\right)$ and $1+\ln\left(\frac{3}{4}\right)$ 3
$1+\ln\left(\frac{3}{4}\right)$ and $2+\ln\left(\frac{3}{4}\right)$ 4
$1+\ln\left(\frac{3}{4}\right)$ and $1+\ln\left(\frac{3}{4}\right)$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2022 PYQ
Solution
Qus : 13
AMU MCA PYQ
4
Three identical fair dice are thrown independently. Let $Y$ denote the number of dice showing even numbers on their upper faces. Then the variance of random variable $Y$ is:
1
$\frac{1}{2}$ 2
$1$ 3
$\frac{3}{2}$ 4
$\frac{3}{4}$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution Each die has probability $p = \frac{1}{2}$ of showing an even number.
So $Y \sim \text{Binomial}(3, \frac12)$
Variance
$= npq = 3 \times \frac12 \times \frac12 = \frac{3}{4}$
Qus : 15
AMU MCA PYQ
4
Let $X$ be a random variable having distribution function $F(x)$. Then which of the following statements may not be true?
1
$F(-\infty)=0$ 2
$F(+\infty)=1$ 3
$F(x)$ is right continuous 4
$F(x)$ is left continuous Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution A distribution function is always right continuous, but it need not be left continuous.
Qus : 16
AMU MCA PYQ
4
Which of the following statements is not true?
1
Mean of binomial distribution is 4 and variance is 3 2
Mean of Poisson distribution is 2 and variance is 2 3
Mean of normal distribution is 3 and variance is 12 4
Mean of geometric distribution is 2 and variance is 1 Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution For geometric distribution, variance is $\frac{q}{p^2}$, which is not equal to 1 for mean 2.
Qus : 17
AMU MCA PYQ
1
Let $X$ be a continuous random variable such that $E|X| < \infty$ and
$P\left(X \ge \frac12 + x\right) = P\left(X \le \frac12 - x\right)$ for all $x \in \mathbb{R}$.
Then:
1
$E(X)=\frac12$ and Median$(X)=\frac12$ 2
$E(X)=\frac12$ and Median$(X)>\frac12$ 3
$E(X)<\frac12$ and Median$(X)=\frac12$ 4
$E(X)<\frac12$ and Median$(X)>\frac12$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution The given condition shows symmetry about $\frac12$.
Hence both mean and median are $\frac12$.
Qus : 18
AMU MCA PYQ
3
A discrete random variable $X$ taking non-negative values has the following moment generating function
$M_X(t) = e^{2(e^t-1)},; -\infty < t < \infty$
Then, the value of $P(X \le 1)$ is:
1
$e^{-2}$ 2
$2e^{-2}$ 3
$3e^{-2}$ 4
$e^{-1}$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution Given MGF corresponds to Poisson distribution with $\lambda = 2$.
$P(X \le 1) = P(0)+P(1)$
$= e^{-2} + 2e^{-2} = 3e^{-2}$
Qus : 19
AMU MCA PYQ
1
Let $X_1, X_2, … , X_n$ be i.i.d. random variables having pdf
$f(x) = (1/θ) e^{-x/θ},; 0 < x < ∞,; θ > 0$
The cdf of the largest order statistic
$X_{(n)} = max(X_1, X_2, … , X_n)$
is:
1
$F_n(x)=(1-e^{-x/\theta})^n$ 2
$F_n(x)=1-e^{-nx/\theta}$ 3
$F_n(x)=1-(1-e^{-x/\theta})^n$ 4
$F_n(x)=\frac{n}{\theta}(1-e^{-x/\theta})^{n-1}e^{-x/\theta}$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution First find the cdf of a single variable $X$:
$F(x)=P(X\le x)=\int_0^x \frac{1}{\theta}e^{-t/\theta},dt
=1-e^{-x/\theta}$
For the largest order statistic,
$F_{X_{(n)}}(x)=P(X_{(n)}\le x)$
Largest $\le x$ means all observations $\le x$:
$P(X_{(n)}\le x)=P(X_1\le x,\dots,X_n\le x)$
Since variables are independent,
$= [F(x)]^n = (1-e^{-x/\theta})^n$
Qus : 20
AMU MCA PYQ
3
A box contains tickets numbered $1$ to $N$.
Let $X$ be the largest number drawn in $n$ random drawings with replacement.
Then the probability $P(X = k)$ is:
1
$k/N$ 2
$(k/N)^n$ 3
$(k/N)^n - ((k-1)/N)^n$ 4
$1/N$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution $P(X \le k) = (k/N)^n$
$P(X \le k-1) = ((k-1)/N)^n$
So,
$P(X = k) = P(X \le k) - P(X \le k-1)$
$= (k/N)^n - ((k-1)/N)^n$
Qus : 23
AMU MCA PYQ
4
Qus : 24
AMU MCA PYQ
1
If the mean and variance of a binomial variate $X$ are 8 and 4 respectively, then
$P(X<3)$ equals:
1
$ \frac{137}{2^{16}} $ 2
$ \frac{235}{2^{16}} $ 3
$ \frac{125}{2^{14}} $ 4
$ \frac{256}{2^{16}} $ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2021 PYQ
Solution For binomial distribution:
Mean $=np=8$
Variance $=np(1-p)=4$
So,
$8(1-p)=4$
$1-p=\frac12$
$p=\frac12$
Then $n=16$
Now,
$P(X<3)=P(0)+P(1)+P(2)$
$= \frac{\binom{16}{0}+\binom{16}{1}+\binom{16}{2}}{2^{16}}$
$= \frac{1+16+120}{2^{16}}$
$= \frac{137}{2^{16}}$
Qus : 25
AMU MCA PYQ
3
If $X$ is the number of heads obtained in four tosses of a balanced coin. Define
$ Y=\dfrac{1}{1+X} $
Find $P\left(Y=\frac{1}{3}\right)$
1
$ \frac{1}{8} $ 2
$ \frac{1}{4} $ 3
$ \frac{3}{8} $ 4
$ \frac{3}{16} $ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2021 PYQ
Solution $Y=\frac{1}{3} \Rightarrow 1+X=3 \Rightarrow X=2$
So we need:
$P(X=2)$
For 4 tosses:
$P(X=2)=\binom{4}{2}\left(\frac12\right)^4$
$=\frac{6}{16}=\frac{3}{8}$
[{"qus_id":"16788","year":"2025"},{"qus_id":"16797","year":"2025"},{"qus_id":"16798","year":"2025"},{"qus_id":"16799","year":"2025"},{"qus_id":"16800","year":"2025"},{"qus_id":"16801","year":"2025"},{"qus_id":"16810","year":"2025"},{"qus_id":"16814","year":"2025"},{"qus_id":"16857","year":"2024"},{"qus_id":"16937","year":"2022"},{"qus_id":"16939","year":"2022"},{"qus_id":"16941","year":"2022"},{"qus_id":"16942","year":"2022"},{"qus_id":"17098","year":"2021"},{"qus_id":"17099","year":"2021"},{"qus_id":"17100","year":"2021"},{"qus_id":"17101","year":"2021"},{"qus_id":"17103","year":"2021"},{"qus_id":"17107","year":"2021"},{"qus_id":"17108","year":"2021"},{"qus_id":"17109","year":"2021"},{"qus_id":"17113","year":"2021"},{"qus_id":"17168","year":"2020"},{"qus_id":"17170","year":"2020"},{"qus_id":"17172","year":"2020"},{"qus_id":"17173","year":"2020"},{"qus_id":"17174","year":"2020"},{"qus_id":"17175","year":"2020"},{"qus_id":"17180","year":"2020"},{"qus_id":"17182","year":"2020"}]