Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

AMU MCA Previous Year Questions (PYQs)

AMU MCA Probability Distribution PYQ


AMU MCA PYQ
If $X$ has an exponential distribution with mean $3$, then the variance of $X$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

For exponential distribution:

Mean $= \frac{1}{\lambda}$

Variance $= \frac{1}{\lambda^2}$

Given mean $=3 \Rightarrow \lambda=\frac{1}{3}$

Variance $=\frac{1}{(1/3)^2}=9$


AMU MCA PYQ
Suppose random variable $X$ has possible values $1,2,3,\dots$ and $P(X=j)=\frac{1}{2^j}$, $j=1,2,3,\dots$ then $P(X \text{ is even})$ equals






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Even values: $2,4,6,\dots$

$P(\text{even})=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\dots$

$=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\dots$

This is geometric series:

$=\frac{1/4}{1-1/4}=\frac{1/4}{3/4}=\frac{1}{3}$


AMU MCA PYQ
If $X$ has discrete uniform distribution with pmf $f(x)=\frac{1}{8}$ for $x=1,2,\dots,8$, then the mean of the distribution is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Mean of uniform integers $1$ to $8$:

$=\frac{1+8}{2}=4.5$


AMU MCA PYQ
If $P(X=0)=1-P(X=1)$ and $E(X)=3V(X)$, the value of $P(X=0)$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Let $p=P(X=1)$

Then $P(X=0)=1-p$

$E(X)=p$

$V(X)=p(1-p)$

Given $p=3p(1-p)$

$1=3(1-p)$

$1=3-3p$

$3p=2$

$p=\frac{2}{3}$

Therefore $P(X=0)=1-p=\frac{1}{3}$


AMU MCA PYQ
If $X$ is a discrete random variable taking positive integer values and possesses memory-less property, then the distribution of $X$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

The only discrete distribution having memory-less property is the Geometric distribution.


AMU MCA PYQ
If $X \sim N(\mu,\sigma^2)$, then $Z^2=\left(\frac{X-\mu}{\sigma}\right)^2$ is a Chi-square variate with






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

$Z=\frac{X-\mu}{\sigma} \sim N(0,1)$

Square of standard normal variable follows $\chi^2$ distribution with 1 d.f.


AMU MCA PYQ
The points of inflexion of a normal distribution with mean $\mu$ and variance $\sigma^2$ are






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

For normal curve, points of inflexion are at

$\mu \pm \sigma$


AMU MCA PYQ
Let $X_1, X_2, \dots, X_n$ be independently and identically distributed $N(\mu,\sigma^2)$. Which of the following is simple hypothesis under $H_0$?






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

A simple hypothesis completely specifies parameter(s).

Thus $\mu=\mu_0$ with $\sigma^2$ known is simple.


AMU MCA PYQ
If the random variable $X$ has the density function $f(x)=e^{x-2}$ for $x<2$, and $f(x)=0$ otherwise, then the 75th percentile and third quartile is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
A discrete random variable $X$ satisfies the memory less property, then the random variable $X$ follows





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
While testing the independence of attributes using Chi-square distribution, suppose attribute $A$ is specified into three classes and attribute $B$ is classified into four classes, then the degree of freedom of Chi-square test is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
f a random variable $X$ takes the values $1, 2, 3, 4$ such that $2P(X=1)=3P(X=2)=P(X=3)=5P(X=4)$, then $P(X=2)$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
Three identical fair dice are thrown independently. Let $Y$ denote the number of dice showing even numbers on their upper faces. Then the variance of random variable $Y$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

Each die has probability $p = \frac{1}{2}$ of showing an even number. So $Y \sim \text{Binomial}(3, \frac12)$ Variance $= npq = 3 \times \frac12 \times \frac12 = \frac{3}{4}$

AMU MCA PYQ
A discrete random variable follows Poisson distribution with parameter $3$. The value of $E(X-6)^2$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

For Poisson distribution, Mean $= \lambda = 3$ Variance $= \lambda = 3$ $E(X-6)^2 = \text{Var}(X) + (E(X) - 6)^2$ $= 3 + (3 - 6)^2 = 3 + 9 = 12$

AMU MCA PYQ
Let $X$ be a random variable having distribution function $F(x)$. Then which of the following statements may not be true?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

A distribution function is always right continuous, but it need not be left continuous.

AMU MCA PYQ
Which of the following statements is not true?





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

For geometric distribution, variance is $\frac{q}{p^2}$, which is not equal to 1 for mean 2.

AMU MCA PYQ
Let $X$ be a continuous random variable such that $E|X| < \infty$ and $P\left(X \ge \frac12 + x\right) = P\left(X \le \frac12 - x\right)$ for all $x \in \mathbb{R}$. Then:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

The given condition shows symmetry about $\frac12$. Hence both mean and median are $\frac12$.

AMU MCA PYQ
A discrete random variable $X$ taking non-negative values has the following moment generating function $M_X(t) = e^{2(e^t-1)},; -\infty < t < \infty$ Then, the value of $P(X \le 1)$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

Given MGF corresponds to Poisson distribution with $\lambda = 2$. $P(X \le 1) = P(0)+P(1)$ $= e^{-2} + 2e^{-2} = 3e^{-2}$

AMU MCA PYQ
Let $X_1, X_2, … , X_n$ be i.i.d. random variables having pdf $f(x) = (1/θ) e^{-x/θ},; 0 < x < ∞,; θ > 0$ The cdf of the largest order statistic $X_{(n)} = max(X_1, X_2, … , X_n)$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

First find the cdf of a single variable $X$: $F(x)=P(X\le x)=\int_0^x \frac{1}{\theta}e^{-t/\theta},dt =1-e^{-x/\theta}$ For the largest order statistic, $F_{X_{(n)}}(x)=P(X_{(n)}\le x)$ Largest $\le x$ means all observations $\le x$: $P(X_{(n)}\le x)=P(X_1\le x,\dots,X_n\le x)$ Since variables are independent, $= [F(x)]^n = (1-e^{-x/\theta})^n$

AMU MCA PYQ
A box contains tickets numbered $1$ to $N$. Let $X$ be the largest number drawn in $n$ random drawings with replacement. Then the probability $P(X = k)$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

$P(X \le k) = (k/N)^n$
$P(X \le k-1) = ((k-1)/N)^n$

So,
$P(X = k) = P(X \le k) - P(X \le k-1)$
$= (k/N)^n - ((k-1)/N)^n$

AMU MCA PYQ
Let $x_1=2.2,\ x_2=4.1,\ x_3=3.4,\ x_4=4.5,\ x_5=1.1,\ x_6=5.7$ be sample from $U(0,\theta)$. Then MLE of $\theta$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

For $U(0,\theta)$, $\hat{\theta}_{MLE}=\max(x_i)$ Maximum = $5.7$

AMU MCA PYQ
If $X_1,\dots,X_n$ are Bernoulli with probability $p$, then constant estimate of $p(1-p)$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Since $\hat{p}=\bar{X}$, Estimate of $p(1-p)$ is $\bar{X}(1-\bar{X})$

AMU MCA PYQ
Let $E(X)=\mu$, $Var(X)=9$. Smallest $m$ such that $P(|X-\mu|




Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using Chebyshev inequality:

$P(|X-\mu|\ge m)\le \frac{Var(X)}{m^2}$

$1-\frac{9}{m^2}\ge 0.99$

$\frac{9}{m^2}\le 0.01$

$m^2\ge 900$

$m=30$

AMU MCA PYQ
If the mean and variance of a binomial variate $X$ are 8 and 4 respectively, then $P(X<3)$ equals:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

For binomial distribution:

Mean $=np=8$
Variance $=np(1-p)=4$

So,

$8(1-p)=4$

$1-p=\frac12$

$p=\frac12$

Then $n=16$

Now,

$P(X<3)=P(0)+P(1)+P(2)$

$= \frac{\binom{16}{0}+\binom{16}{1}+\binom{16}{2}}{2^{16}}$

$= \frac{1+16+120}{2^{16}}$

$= \frac{137}{2^{16}}$

AMU MCA PYQ
If $X$ is the number of heads obtained in four tosses of a balanced coin. Define $ Y=\dfrac{1}{1+X} $ Find $P\left(Y=\frac{1}{3}\right)$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$Y=\frac{1}{3} \Rightarrow 1+X=3 \Rightarrow X=2$ So we need: $P(X=2)$ For 4 tosses: $P(X=2)=\binom{4}{2}\left(\frac12\right)^4$ $=\frac{6}{16}=\frac{3}{8}$

AMU MCA PYQ
If $g$ is convex and $X$ is random variable, then:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

By Jensen's inequality: $E[g(X)]\ge g(E[X])$

AMU MCA PYQ
If $X$ follows geometric distribution, then: $P(X\ge j+k|X\ge j)=$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Geometric distribution has memoryless property: $P(X\ge j+k|X\ge j)=P(X\ge k)$

AMU MCA PYQ
Let $X\sim N(\mu,\sigma^2)$ where both unknown. Test hypothesis:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Simple hypothesis specifies both parameters. So correct simple hypothesis: $H_0:\mu=2,\sigma=4$

AMU MCA PYQ
The degree of peakedness is called:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2024 PYQ

Solution

The statistical measure that describes the peakedness of a distribution is called Kurtosis.

AMU MCA PYQ
The skewness in a binomial distribution will be zero, if





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Skewness of binomial:

$\gamma = \dfrac{1-2p}{\sqrt{np(1-p)}}$

Zero when:

$1-2p=0$

$p=\frac12$


AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...