Qus : 1
AMU MCA PYQ
2
The following system of equations:
$2x_1 + x_2 - x_3 = 2$
$3x_1 + 2x_2 + x_3 = 3$
has:
1
All degenerate solutions 2
2 degenerate and 1 non-degenerate solutions 3
All non-degenerate solutions 4
1 degenerate and 2 non-degenerate solutions Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution Rank of coefficient matrix equals rank of augmented matrix but less than number of variables, hence there are 2 degenerate and 1 non-degenerate solutions.
Qus : 2
AMU MCA PYQ
3
Let $T:\mathbb{R}^4 \rightarrow \mathbb{R}^3$ be a linear transformation defined by
$T(x_1,x_2,x_3,x_4)=C(x_1-x_2,;x_2-x_3,;x_3-x_4)$
Then which of the following is true?(i) $\dim(\ker T)=1$ if $C \ne 0$
(ii) $\dim(\ker T)=0$ if $C=0$
(iii) $\dim(\ker T)=1$ if $T$ is onto
1
(i) & (ii) 2
(ii) & (iii) 3
(i) & (iii) 4
(i), (ii) & (iii) Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2025 PYQ
Solution For $C \ne 0$, kernel has dimension 1.
If $T$ is onto, rank is 3, hence nullity is 1.
Qus : 3
AMU MCA PYQ
4
Let $T : P_2(x) \to P_2(x)$ be a linear transformation on vector space $P_2(x)$ (polynomials of degree $\le 2$ over $\mathbb{R}$) such that
$T(f(x)) = \dfrac{d}{dx}(f(x))$.
Then the matrix of $T$ w.r.t. basis ${1, x, x^2}$ is:
1
$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]
$
2
$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$
3
$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$
4
$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$
Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2021 PYQ
Solution
Qus : 6
AMU MCA PYQ
2
Which of the following is not true?
1
Cylinder is a surface generated by a line parallel to a given line and passing through a curve. 2
Cylinder is a surface generated by a line parallel to a given line and always at constant distance from given line. 3
Right circular cone is surface generated by a line through a fixed point making constant angle from axis. 4
Only (a) and (c) are correct. Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution Definition (b) is incorrect.
Qus : 7
AMU MCA PYQ
1
Let $T$ be a linear operator on $\mathbb{R}^3$ defined by
$T(x,y,z) = (2x,; x-y,; 5x + 4y + z)$
Then $T^{-1}$ is
1
$\left(\frac{x}{2}, \frac{x - 2y}{2}, \frac{-9x + 8y + 2z}{2}\right)$ 2
$\left(\frac{3x}{2}, \frac{2x - y}{2}, \frac{-9x + 8y + z}{2}\right)$ 3
$\left(\frac{5x}{2}, \frac{2x - y}{2}, \frac{-9x + 8y + 2z}{2}\right)$ 4
$\left(\frac{x}{2}, \frac{2y - x}{2}, \frac{9x + 8y + 2z}{2}\right)$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution Given:
$T(x,y,z) = (2x,\; x-y,\; 5x+4y+z)$
Write system:
$u = 2x$
$v = x - y$
$w = 5x + 4y + z$
From first:
$x = \frac{u}{2}$
From second:
$y = x - v = \frac{u}{2} - v$
From third:
$z = w - 5x - 4y$
$z = w - \frac{5u}{2} - 4\left(\frac{u}{2} - v\right)$
$z = w - \frac{5u}{2} - 2u + 4v$
$z = w - \frac{9u}{2} + 4v$
Thus inverse:
$T^{-1}(x,y,z) = \left(\frac{x}{2}, \frac{x - 2y}{2}, \frac{-9x + 8y + 2z}{2}\right)$
Qus : 8
AMU MCA PYQ
2
If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ satisfies the matrix equation $A^2 - kA + 2I = 0$, then the value of $k$ is:
1
0 2
1 3
2 4
3 Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution Trace of $A = 3 + (-2) = 1$
Determinant of $A = (3)(-2) - (-8) = -6 + 8 = 2$
Characteristic equation of $A$ is:
$\lambda^2 - (\text{trace})\lambda + \det = 0$
$\lambda^2 - \lambda + 2 = 0$
By Cayley–Hamilton theorem:
$A^2 - A + 2I = 0$
Comparing with $A^2 - kA + 2I = 0$
$k = 1$
Qus : 9
AMU MCA PYQ
2
Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y) = (-x-y, 3x+8y, 9x-11y)$. Then the rank and nullity of $T$ are respectively
1
1 & 0 2
2 & 0 3
0 & 2 4
1 & 1 Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution Matrix form:
$\begin{bmatrix} -1 & -1 \\ 3 & 8 \\ 9 & -11 \end{bmatrix}$
Columns are independent ⇒ Rank = 2
Nullity = 2 - 2 = 0
[{"qus_id":"16795","year":"2025"},{"qus_id":"16808","year":"2025"},{"qus_id":"17068","year":"2021"},{"qus_id":"17074","year":"2021"},{"qus_id":"17135","year":"2020"},{"qus_id":"17139","year":"2020"},{"qus_id":"17141","year":"2020"},{"qus_id":"17142","year":"2020"},{"qus_id":"17146","year":"2020"}]