Maximize $z = x_1 + x_2$
Subject to
$x_1 + x_2 \le 1$
$-3x_1 + x_2 \ge 3$
$x_1, x_2 \ge 0$
From $-3x_1 + x_2 \ge 3$
$x_2 \ge 3 + 3x_1$
But from $x_1 + x_2 \le 1$
$x_2 \le 1 - x_1$
So we need:
$3 + 3x_1 \le 1 - x_1$
$4x_1 \le -2$
$x_1 \le -\frac{1}{2}$
This contradicts $x_1 \ge 0$
Hence problem is infeasible.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.