Qus : 1
AMU MCA PYQ
1
Consider the series $x_{n+1}=\frac{x_n}{2}+\frac{9}{8x_n}$, $x_0=0.5$ obtained from the Newton-Raphson method. The series converges to
1
$1.5$ 2
$\sqrt{2}$ 3
$1.6$ 4
$1.4$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution $x_{n+1}=\frac{1}{2}\left(x_n+\frac{9}{4x_n}\right)$ is Newton iteration for $\sqrt{\frac{9}{4}}$
$\sqrt{\frac{9}{4}}=\frac{3}{2}=1.5$
Qus : 2
AMU MCA PYQ
3
Let $f(x)$ be continuous whose values are known at
$-2,-1,1,2$. If the Lagrange interpolation formula
$f(x)=L_1f(-2)+L_2f(-1)+L_3f(1)+L_4f(2)$ is used to approximate
$f(0)$, then $L_3$ is
1
0 2
$\frac{1}{3}$ 3
$\frac{2}{3}$ 4
$\frac{4}{3}$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2020 PYQ
Solution Lagrange basis for node $x_3=1$:
$L_3(0)=\frac{(0+2)(0+1)(0-2)}{(1+2)(1+1)(1-2)}$
$=\frac{(2)(1)(-2)}{(3)(2)(-1)}
=\frac{-4}{-6}=\frac{2}{3}$
Qus : 5
AMU MCA PYQ
4
If
$x + y + z = u$
$y + z = uv$
$z = uvw$
then the value of the Jacobian
$\dfrac{\partial(x,y,z)}{\partial(u,v,w)}$
is
1
$uv$ 2
$uv^2$ 3
$u^2v^2$ 4
$u^2v$ Go to Discussion
AMU MCA Previous Year PYQ
AMU MCA AMU MCA 2021 PYQ
Solution Given
$z = uvw$
$y + z = uv$
$\Rightarrow y = uv - uvw = uv(1 - w)$
Now
$x + y + z = u$
$\Rightarrow x = u - y - z$
Substitute:
$x = u - uv(1 - w) - uvw$
$x = u - uv + uvw - uvw$
$x = u - uv$
$x = u(1 - v)$
So,
$x = u(1 - v)$
$y = uv(1 - w)$
$z = uvw$
[{"qus_id":"16790","year":"2025"},{"qus_id":"17069","year":"2021"},{"qus_id":"17082","year":"2021"},{"qus_id":"17157","year":"2020"},{"qus_id":"17163","year":"2020"},{"qus_id":"17185","year":"2020"}]