Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

AMU MCA Previous Year Questions (PYQs)

AMU MCA Differentiation PYQ


AMU MCA PYQ
Consider the series $x_{n+1}=\frac{x_n}{2}+\frac{9}{8x_n}$, $x_0=0.5$ obtained from the Newton-Raphson method. The series converges to





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

$x_{n+1}=\frac{1}{2}\left(x_n+\frac{9}{4x_n}\right)$ is Newton iteration for $\sqrt{\frac{9}{4}}$

$\sqrt{\frac{9}{4}}=\frac{3}{2}=1.5$


AMU MCA PYQ
Let $f(x)$ be continuous whose values are known at $-2,-1,1,2$. If the Lagrange interpolation formula $f(x)=L_1f(-2)+L_2f(-1)+L_3f(1)+L_4f(2)$ is used to approximate $f(0)$, then $L_3$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Lagrange basis for node $x_3=1$:

$L_3(0)=\frac{(0+2)(0+1)(0-2)}{(1+2)(1+1)(1-2)}$

$=\frac{(2)(1)(-2)}{(3)(2)(-1)} =\frac{-4}{-6}=\frac{2}{3}$


AMU MCA PYQ
Which of the following potentials does not satisfy Laplace’s equation?






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Laplace equation: $\nabla^2\phi=0$

(a) $\nabla^2=2+10-12=0$ ✔

(b) $\nabla^2=0$ ✔

(c) $\nabla^2=0-2+2=0$ ✔

(d) $\nabla^2=4-8+2=-2 \ne 0$ ✘


AMU MCA PYQ
The Newton–Raphson method converges fast, if $f'(\alpha)$ is: ($\alpha$ is the exact value of the root)





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

Newton–Raphson method converges faster when the derivative at the root is large.

AMU MCA PYQ
If $x + y + z = u$ $y + z = uv$ $z = uvw$ then the value of the Jacobian $\dfrac{\partial(x,y,z)}{\partial(u,v,w)}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Given $z = uvw$ $y + z = uv$ $\Rightarrow y = uv - uvw = uv(1 - w)$ Now $x + y + z = u$ $\Rightarrow x = u - y - z$ Substitute: $x = u - uv(1 - w) - uvw$ $x = u - uv + uvw - uvw$ $x = u - uv$ $x = u(1 - v)$ So, $x = u(1 - v)$ $y = uv(1 - w)$ $z = uvw$

AMU MCA PYQ
If $u=f(x-y,y-z,z-x)$, then the value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Using chain rule, derivatives cancel out. Result: $=0$


AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...