Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

AMU MCA Previous Year Questions (PYQs)

AMU MCA Differential Equation PYQ


AMU MCA PYQ
The solution of the linear difference equation $y_{k+1}-ay_k=0$, $a\ne 1$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

$y_{k+1}=ay_k \Rightarrow y_k=ca^k$


AMU MCA PYQ
The general solution of the differential equation $(D^2 - a^2)^3 y = e^{ax}$, where $D=\frac{d}{dx}$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Characteristic equation:

$(m^2-a^2)^3=0$

Roots: $m=\pm a$ each of multiplicity 3.

Hence complementary function:

$(c_1+c_2x+c_3x^2)e^{ax}+(c_4+c_5x+c_6x^2)e^{-ax}$

Since RHS is $e^{ax}$ and $m=a$ has multiplicity 3,

Particular integral = $x^3\frac{e^{ax}}{3!\,(2a)^3} =\frac{x^2e^{ax}}{8a^2}$


AMU MCA PYQ
Solution of differential equation $y^2\log y = xy\frac{dy}{dx}+\left(\frac{dy}{dx}\right)^2$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2022 PYQ

Solution


AMU MCA PYQ
The Laplace transform of $\sin \sqrt{x}$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

The feasible region allows $z$ to increase indefinitely, hence the objective function is unbounded.

AMU MCA PYQ
The solution of the differential equation $y\sin 2x,dx - (y^2 + \cos^2 x),dy = 0$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

After making the equation exact and integrating, the solution obtained is $3y\sin 2x + y^2 + 2y^3 = C$.

AMU MCA PYQ
The solution of $3\frac{\partial^2 z}{\partial x,\partial y} - 2\frac{\partial^2 z}{\partial y^2} - \frac{\partial z}{\partial y} = 0$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

Solving the auxiliary equation gives complementary function of the form $\phi_1(x) + e^{x/3}\phi_2(3y+2x)$.

AMU MCA PYQ
An integrating factor of $\frac{dy}{dx} = \frac{1}{3x + y^2 + 2}$ is:





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2025 PYQ

Solution

The equation is linear in $x$; integrating factor is $e^{-\int 3,dy} = e^{-3y}$.

AMU MCA PYQ
The solution of $y' = 2px + \tan^{-1}(xp^2)$ (where $p=\dfrac{dy}{dx}$) is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Assume $p=c$ Then $y=cx+\tan^{-1}(c^2x)$

AMU MCA PYQ
The extremal of functional $\iint_D\left[\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2+\left(\frac{\partial^2 z}{\partial x\partial y}\right)^2\right]dxdy$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution


AMU MCA PYQ
The complete solution of $(p^2+q^2)=qz$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$z=(a^2+b^2)x+by$

AMU MCA PYQ
The solution of the differential equation $ \dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} + y = xe^x \sin x $





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

Auxiliary equation: $ m^2 - 2m + 1 = 0 $ $ (m-1)^2 = 0 $ So CF: $ y_c = (c_1 + c_2 x)e^x $ Particular integral gives: $ y_p = e^x(2\cos x + x\sin x) $ Therefore, $ y = (c_1 + c_2 x)e^x + e^x(2\cos x + x\sin x) $

AMU MCA PYQ
An integrating factor for $ (y^2+2y),dx+(2xy+x^2),dy=0 $ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

$ x^{-1/3}y^{-5/3} $

AMU MCA PYQ
If $y_1$ and $y_2$ are two solutions of $ y''+p(x)y'+q(x)y=0 $ and Wronskian $W(y_1,y_2)=0$, then $y_1,y_2$ are





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2021 PYQ

Solution

If Wronskian = 0 ⇒ solutions are linearly dependent.

AMU MCA PYQ
The general solution of $(y - z)p + (z - x)q = x - y$ is





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Given Lagrange’s linear PDE $(y - z)p + (z - x)q = x - y$ Auxiliary equations: $\frac{dx}{y - z} = \frac{dy}{z - x} = \frac{dz}{x - y}$ First integral: Add numerators and denominators: $(y - z) + (z - x) + (x - y) = 0$ ⇒ $dx + dy + dz = 0$ ⇒ $x + y + z = c_1$ Second integral: Multiply by $x, y, z$ respectively and add: $x(y - z) + y(z - x) + z(x - y) = 0$ ⇒ $d(x^2 + y^2 + z^2) = 0$ ⇒ $x^2 + y^2 + z^2 = c_2$ Hence general solution is $\phi(x + y + z,; x^2 + y^2 + z^2) = 0$

AMU MCA PYQ
The solution of $\frac{dx}{x^2 - yz - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$ is given by





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

From second and third: $\frac{dy}{2xy} = \frac{dz}{2xz}$ ⇒ $\frac{dy}{y} = \frac{dz}{z}$ ⇒ $\frac{y}{z} = c_1$ Using substitution in first part gives second integral $\frac{x^2 + y^2 - z^2}{2} = c_2$

AMU MCA PYQ
An integrating factor for $(\cos y \sin 2x)dx + (\cos^2 y - \cos^2 x)dy = 0$





Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Using standard form and checking $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}$ Integrating factor becomes $\frac{1}{\tan^2 y + \sec y \tan y}$

AMU MCA PYQ
The general solution of $y = 2x \frac{dy}{dx} + y\left(\frac{dy}{dx}\right)^2$ is






Go to Discussion

AMU MCA Previous Year PYQ AMU MCA AMU MCA 2020 PYQ

Solution

Put $p = \frac{dy}{dx}$

$y = 2xp + yp^2$

$y(1 - p^2) = 2xp$

$y = \frac{2xp}{1 - p^2}$

This is Clairaut’s form. Hence general solution is

$2xc - y + c^2 = 0$



AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

AMU MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...