Goal: Find a set of attributes whose closure covers all attributes of R = {A, B, C, D, E}.
Check (1) CD+:
From C → F we get F. D gives nothing further. So CD+ = {C, D, F}.
Missing A, B, E ⇒ not a key.
Check (2) EC+:
Start {E, C}. Using E → A ⇒ add A. Using A → B ⇒ add B. Using EC → D ⇒ add D.
Therefore EC+ = {E, C, A, B, D} = {A, B, C, D, E}. Covers all attributes of R ⇒ key.
Check (3) AE+:
A → B gives B; E → A adds nothing new. No way to reach C or D ⇒ not a key.
Check (4) AC+:
A → B gives B; C → F gives F. No E or D ⇒ not a key.
Answer: (2) EC
Note: F is outside R, so while C → F is valid, a key must cover only attributes of R. EC+ covers {A, B, C, D, E}.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.