If f\colon R\rightarrow R is defined by f(x)=\begin{cases}{\frac{x+2}{{x}^2+3x+2}} & {,\, if\, x\, \in R-\{-1,-2\}} \\ {-1} & {,if\, x=-2} \\ {0} & {,if\, x=-1}\end{cases} , then f(x) is continuous on the set
Let g:\mathbb{R}\rightarrow \mathbb{R} and h:\mathbb{R}\rightarrow \mathbb{R}, be two functions such that h(x) = sgn(g(x)). Then select
which of the following is not true?( \mathbb{R} denotes the set of all real numbers, sgn stands for
signum function)