Given that the inverse trigonometric functions assume principal values only.
Let $x,y\in[-1,1]$ such that $\cos^{-1}x-\sin^{-1}y=\alpha$, with $-\dfrac{\pi}{2}\le\alpha\le\pi$.
Then, the minimum value of $x^{2}+y^{2}+2xy\sin\alpha$ is:
If $\tan A$ and $\tan B$ are the roots of the quadratic equation $3x^{2}-10x-25=0$, then the value of
$3\sin^{2}(A+B)-10\sin(A+B)\cos(A+B)-25\cos^{2}(A+B)$ is :
If $2\tan^2\theta-5\sec\theta=1$ has exactly $7$ solutions in the interval
$\left[0,\dfrac{n\pi}{2}\right]$, for the least value of $n\in\mathbb{N}$, then
$\displaystyle \sum_{k=1}^{n}\frac{k}{2^{k}}$ is equal to:
Let M and m respectively be the maximum and minimum values of the function f(x) = tan$-$1 (sin x + cos x) in $\left[ {0,{\pi \over 2}} \right]$, then the value of tan(M $-$ m) is equal to :
If $2\sin^3x+\sin2x\cos x+4\sin x-4=0$ has exactly $3$ solutions in the interval $\left[0,\dfrac{n\pi}{2}\right],,n\in\mathbb N$, then the roots of the equation $x^2+nx+(n-3)=0$ belong to:
For $\alpha,\beta\in(0,\dfrac{\pi}{2})$, let $3\sin(\alpha+\beta)=2\sin(\alpha-\beta)$ and a real number $k$ be such that $\tan\alpha=k\tan\beta$.
Then, the value of $k$ is equal to:
If the value of $\dfrac{5\cos36^{\circ}+5\sin18^{\circ}}{5\cos36^{\circ}-3\sin18^{\circ}}$ is $\dfrac{a\sqrt{5}-b}{c}$, where $a,b,c$ are natural numbers and $\gcd(a,c)=1$, then $a+b+c$ is equal to:
Let $\lvert\cos\theta,\cos(60^\circ-\theta),\cos(60^\circ+\theta)\rvert\le \dfrac{1}{8},;\theta\in[0,2\pi]$.
Then the sum of all $\theta\in[0,2\pi]$ where $\cos 3\theta$ attains its maximum value is:
Let $f(\theta)=3\big(\sin^{4}\!\left(\tfrac{3\pi}{2}-\theta\right)+\sin^{4}\!(3\pi+\theta)\big)-2\big(1-\sin^{2}2\theta\big)$ and
$S=\left\{\theta\in[0,\pi]:\, f'(\theta)=-\dfrac{\sqrt{3}}{2}\right\}$.
If $4\beta=\displaystyle\sum_{\theta\in S}\theta$, then $f(\beta)$ is equal to:
If $\theta \in \left[-\dfrac{7\pi}{6}, \dfrac{4\pi}{3}\right]$, then the number of solutions of
$\sqrt{3}\csc^2\theta - 2(\sqrt{3} - 1)\csc\theta - 4 = 0$
is equal to:
Let $A = \{\theta \in (-\frac{\pi}{2}, \pi) : \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \text{ is purely imaginary}\}$.
Then the sum of the elements in $A$ is:
$
\text { The number of solutions of the equation } 2 x+3 \tan x=\pi, x \in[-2 \pi, 2 \pi]-\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}\right\} \text { is: }
$
Let $P = \{\theta : \sin\theta - \cos\theta = \sqrt{2}\cos\theta\}$
and $Q = \{\theta : \sin\theta + \cos\theta = \sqrt{2}\sin\theta\}$ be two sets. Then
$2 \sin\!\left(\tfrac{\pi}{22}\right) \sin\!\left(\tfrac{3\pi}{22}\right) \sin\!\left(\tfrac{5\pi}{22}\right) \sin\!\left(\tfrac{7\pi}{22}\right) \sin\!\left(\tfrac{9\pi}{22}\right)$ is equal to :