Let $a>0$. If the function $f(x)=6x^3-45ax^2+108a^2x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1x_2=54$, then $a+x_1+x_2$ is equal to
The set of all real values of $\lambda $ for which thefunction$f(x) = \left( {1 - {{\cos }^2}x} \right)\left( {\lambda + \sin x} \right),x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$ has exactly one maxima and exactly oneminima, is :
If a right circular cone, having maximum volume, is inscribed in a sphere of radius $3\ \text{cm}$, then the curved surface area (in $\text{cm}^{2}$) of this cone is :
Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^{3}+ax^{2}+b\log_{e}|x|+1,;x\neq0$. Let $m$ and $M$ respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\dfrac{1}{2}\right]$. Then $|M+m|$ is equal to (take $\log_{e}2=0.7$):
Let $f:\mathbb{R}\to\mathbb{R}$ be a polynomial of degree four having extreme values at $x=4$ and $x=5$. If $\displaystyle \lim_{x\to 0}\frac{f(x)}{x^{2}}=5$, then $f(2)$ is equal to:
Let $f(x)$ be a polynomial of degree $4$ having extreme values at $x=1$ and $x=2$.
If $\lim_{x\to 0}\left(\dfrac{f(x)}{x^{2}}+1\right)=3$ then $f(-1)$ is equal to :
Let $f(x) = x^{2} + \dfrac{1}{x^{2}}$ and $g(x) = x - \dfrac{1}{x}$, $x \in \mathbb{R} - {-1,0,1}$.
If $h(x) = \dfrac{f(x)}{g(x)}$, then the local minimum value of $h(x)$ is
The square tin of side $30\ \text{cm}$ is made into an open-top box by cutting a square of side $x$ from each corner and folding up the flaps. If the volume of the box is maximum, then its surface area (in $\text{cm}^2$) is:
Let $M$ and $m$ be respectively the absolute maximum and the absolute minimum values of the function
$f(x) = 2x^{3} - 9x^{2} + 12x + 5$ in the interval $[0, 3]$. Then $M - m$ is equal to :
Let $M$ and $m$ be respectively the absolute maximum and the absolute minimum values of the function $f(x)=2x^{3}-9x^{2}+12x+5$ in the interval $[0,3]$. Then $M-m$ is equal to :
Let $f(x) = 2{\cos ^{ - 1}}x + 4{\cot ^{ - 1}}x - 3{x^2} - 2x + 10$, $x \in [ - 1,1]$. If [a, b] is the range of the function f, then 4a $-$ b is equal to :
If $S_1$ and $S_2$ are respectively the sets of local minimum and local maximum points of the function $f(x)=9x^4+12x^3-36x^2+25,\ x\in\mathbb{R}$, then:
The maximum area of a triangle whose one vertex is at $(0,0)$ and the other two vertices
lie on the curve $y=-2x^{2}+54$ at points $(x,y)$ and $(-x,y)$, where $y>0$, is:
Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is :
Let $x=2$ be a local minima of the function $f(x)=2x^{4}-18x^{2}+8x+12,\ x\in(-4,4)$.
If $M$ is the local maximum value of the function $f$ in $(-4,4)$, then $M=$
If m and n respectively are the number of local maximum and local minimum points of the function $f(x) = \int\limits_0^{{x^2}} {{{{t^2} - 5t + 4} \over {2 + {e^t}}}dt} $, then the ordered pair (m, n) is equal to
If the local maximum value of the function $f(x)=\left(\dfrac{\sqrt{3}e}{2\sin x}\right)^{\sin^{2}x},; x\in\left(0,\dfrac{\pi}{2}\right),$ is $\dfrac{k}{e},$ then $\left(\dfrac{k}{e}\right)^{8}+\dfrac{k^{8}}{e^{5}}+k^{8}$ is equal to:
Let the function $f(x)=2x^{3}+(2p-7)x^{2}+3(2p-9)x-6$ have a maxima for some value of $x<0$ and a minima for some value of $x>0$.
Then, the set of all values of $p$ is:
If $f(x)$ is a non-zero polynomial of degree $4$, having local extreme points at $x=-1,0,1$, then the set $S={x\in\mathbb{R}: f(x)=f(0)}$ contains exactly:
If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where $a > 0$, attains its local maximum and local minimum values at $p$ and $q$ respectively, such that $p^2 = q$, then $f(3)$ is equal to:
Suppose f(x) is a polynomial of degree four,having critical points at –1, 0, 1. If T = {x $ \in $ R | f(x) = f(0)}, then the sum of squares of all the elements of T is :
A wire of length $2$ units is cut into two parts which are bent respectively to form a square of side $= x$ units and a circle of radius $= r$ units.
If the sum of the areas of the square and the circle so formed is minimum, then:
If xy4 attains maximum value at the point (x, y) on the line passing through the points (50 + $\alpha$, 0) and (0, 50 + $\alpha$), $\alpha$ > 0, then (x, y) also lies on the line :
If xy4 attains maximum value at the point (x, y) on the line passing through the points (50 + $\alpha$, 0) and (0, 50 + $\alpha$), $\alpha$ > 0, then (x, y) also lies on the line :
Let m and M respectively be the minimum and the maximum values of $f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$. Then m + M is equal to :
If the functions $f(x)=\dfrac{x^{3}}{3}+2bx+\dfrac{a x^{2}}{2}$ and $g(x)=\dfrac{x^{3}}{3}+a x+b x^{2},\ a\ne 2b$ have a common extreme point, then $a+2b+7$ is equal to:
If the absolute maximum value of the function $f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)}$ in the interval $[-3,0]$ is $f(\alpha)$, then :
The curve $y(x)=a x^{3}+b x^{2}+c x+5$ touches the $x$-axis at the point $\mathrm{P}(-2,0)$ and cuts the $y$-axis at the point $Q$, where $y^{\prime}$ is equal to 3 . Then the local maximum value of $y(x)$ is:
Let $a,b\in\mathbb{R}$, $(a\neq 0)$. If the function $f$ defined as
$f(x)=
\begin{cases}
\dfrac{2x^{2}}{a}, & 0\le x<1 \\
a, & 1\le x<\sqrt{2} \\
\dfrac{2b^{2}-4b}{x^{3}}, & \sqrt{2}\le x<\infty
\end{cases}$
is continuous in the interval $[0,\infty)$, then an ordered pair $(a,b)$ is :
Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=\left|,|x+2|-2|x|,\right|$. If $m$ is the number of points of local minima and $n$ is the number of points of local maxima of $f$, then $m+n$ is
Let $f(x)=\displaystyle \int_{0}^{e^{x^{2}}}\frac{t^{2}-8t+15}{e^{t}}\,dt,\ x\in\mathbb{R}$.
Then the numbers of local maximum and local minimum points of $f$, respectively, are:
Let $f(x)$ be a polynomial of degree four having extreme values
at $x=1$ and $x=2$. If $\displaystyle \lim_{x\to 0}\left[1+\frac{f(x)}{x^{2}}\right]=3$,
then $f(2)$ is equal to :
Let the sum of the maximum and the minimum values of the function
$f(x)=\dfrac{2x^{2}-3x+8}{2x^{2}+3x+8}$ be $\dfrac{m}{n}$, where $\gcd(m,n)=1$.
Then $m+n$ is equal to: