If the solution of the equation $\log_{\cos x}\!\big(\cot x\big) + 4\log_{\sin x}\!\big(\tan x\big) = 1,\ x\in\left(0,\tfrac{\pi}{2}\right),$ is $\sin^{-1}\!\left(\tfrac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha,\beta$ are integers, then $\alpha+\beta$ is equal to: