Let f : R $\to$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$ is equal to :
Let $f$ be a differentiable function on $\mathbb{R}$ such that $f(2)=1,\ f'(2)=4$.
Let $\displaystyle \lim_{x\to 0}\big(f(2+x)\big)^{\frac{3}{x}}=e^{\alpha}$.
Then the number of times the curve $y=4x^3-4x^2-4(\alpha-7)x-\alpha$ meets the $x$-axis is:
Let $[x]$ denote the greatest integer less than or equal to $x$. Then
$\displaystyle \lim_{x\to 0}\frac{\tan(\pi\sin^{2}x)+\left(|x|-\sin(x[x])\right)^{2}}{x^{2}}$ :
Let $a_{1},a_{2},a_{3},\ldots,a_{n}$ be $n$ positive consecutive terms of an arithmetic progression.
If $d>0$ is its common difference, then
\[
\lim_{n\to\infty}\sqrt{\frac{d}{n}}
\left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}
+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}
+\cdots
+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right)
\]
is:
\[
\lim_{n\to\infty} \left\{ \left(2^{\tfrac12}-2^{\tfrac13}\right)\left(2^{\tfrac12}-2^{\tfrac15}\right)\cdots\left(2^{\tfrac12}-2^{\tfrac{1}{2n+1}}\right) \right\}
\]
is equal to:
If $a=\displaystyle\lim_{x\to 0}\dfrac{\sqrt{\,1+\sqrt{\,1+x^{2}\,}\,}-\sqrt{2}}{x^{2}}$
and $b=\displaystyle\lim_{x\to 0}\dfrac{\sin^{2}x}{\sqrt{2}-\sqrt{\,1+\cos x\,}}$,
then the value of $ab^{3}$ is:
Let f(x) be a polynomial function such that $f(x) + f'(x) + f''(x) = {x^5} + 64$. Then, the value of $\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$ is equal to:
The numbers $\alpha>\beta>0$ are the roots of the equation $a x^{2}+b x+1=0$, and
$\displaystyle \lim_{x\to \frac{1}{\alpha}} \left( \frac{1-\cos!\big(x^{2}+bx+a\big)}{2(1-a x)^{2}} \right)^{\tfrac{1}{2}}
= \frac{1}{k}!\left(\frac{1}{\beta}-\frac{1}{\alpha}\right).$
Then $k$ is equal to:
If
$\lim_{x \to 0} \dfrac{\alpha e^{x^2} + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \dfrac{2}{3}$,
where $\alpha, \beta, \gamma \in \mathbb{R}$, then which of the following is NOT correct?
For each $t \in \mathbb{R}$, let $[t]$ be the greatest integer less than or equal to $t$.
Then $\displaystyle \lim_{x \to 0^{+}} x\left(\left[\frac{1}{x}\right] + \left[\frac{2}{x}\right] + \cdots + \left[\frac{15}{x}\right]\right)$
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$ equals :
Let $f:(-\infty,\infty)\setminus{0}\to\mathbb{R}$ be differentiable such that $f'(1)=\lim_{a\to\infty} a^{2}f!\left(\tfrac{1}{a}\right)$. Then
$\displaystyle \lim_{a\to\infty}\left(\frac{a(a+1)}{2}\tan^{-1}!\frac{1}{a}+a^{2}-2\log_{e}a\right)$ is:
$\displaystyle \lim_{x\to\frac{\pi}{2}}
\left(
\frac{1}{(x-\frac{\pi}{2})^{2}}\,
\frac{\left(\frac{\pi}{3}\right)^{3}}{x^{3}}
\int_{0}^{x}\cos\!\left(t^{1/3}\right)\,dt
\right)$ is equal to:
Given below are two statements:
Statement I:
$\displaystyle \lim_{x \to 0} \left( \tan^{-1}x + \log_e \dfrac{\sqrt{1+x}}{1-x} - 2x \right) = \dfrac{2}{5}$
Statement II:
$\displaystyle \lim_{x \to 1} \left( x^{\frac{1}{x-1}} \right) = \dfrac{1}{e^2}$
In the light of the above statements, choose the correct answer from the options given below:
Let a be an integer such that $\mathop {\lim }\limits_{x \to 7} {{18 - [1 - x]} \over {[x - 3a]}}$ exists, where [t] is greatest integer $\le$ t. Then a is equal to :
Let $f:[-\tfrac{\pi}{2}, \tfrac{\pi}{2}] \to \mathbb{R}$ be a differentiable function such that $f(0)=\tfrac{1}{2}$.
If $\displaystyle \lim_{x \to 0} \frac{x \int_0^x f(t),dt}{e^{x^2} - 1} = \alpha$,
then $8\alpha^2$ is equal to:
The set of all values of $a$ for which
$\displaystyle \lim_{x\to a}\big([x-5]-[2x+2]\big)=0$, where $[\alpha]$ denotes the greatest integer less than or equal to $\alpha$, is equal to:
Let [t] denote the greatest integer$ \le $ t. If for some $\lambda $ $ \in $ R - {1, 0}, $\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$ = L, then L isequal to
The value of $\mathop {\lim }\limits_{x \to {0^ + }} {{{{\cos }^{ - 1}}(x - {{[x]}^2}).{{\sin }^{ - 1}}(x - {{[x]}^2})} \over {x - {x^3}}}$, where [ x ] denotes the greatest integer $ \le $ x is :
Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable function satisfying $f'(3)+f'(2)=0$. Then
$\displaystyle \lim_{x\to0}\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}\right)^{!1/x}$ is equal to:
The value of $\mathop {\lim }\limits_{n \to \infty } {{[r] + [2r] + ... + [nr]} \over {{n^2}}}$, where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :
For $\alpha, \beta, \gamma \in \mathbf{R}$, if $\lim _\limits{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3$, then $\beta+\gamma-\alpha$ is equal to :
If the function $f(x) = \left\{ {\matrix{
{a|\pi - x| + 1,x \le 5} \cr
{b|x - \pi | + 3,x > 5} \cr
} } \right.$
is
continuous at x = 5, then the value of a – b is :
Let $x=2$ be a root of the equation $x^{2}+px+q=0$ and define
\[
f(x)=
\begin{cases}
\dfrac{1-\cos\!\big(x^{2}-4px+q^{2}+8q+16\big)}{(x-2p)^{4}}, & x\ne 2p,\\[6pt]
0, & x=2p.
\end{cases}
\]
Then $\displaystyle \lim_{x\to 2p^{+}} \big[\,f(x)\,\big]$, where $[\cdot]$ denotes the greatest integer function, is:
Let $f,g:(0,\infty)\to\mathbb{R}$ be defined by
$f(x)=\int_{-x}^{x}\big(|t|-t^{2}\big)e^{-t^{2}}\,dt,\qquad
g(x)=\int_{0}^{x^{2}} t^{1/2}e^{-t}\,dt.$
Then the value of
$g\!\left( f\!\big(\sqrt{\log_e 9}\,\big)+g\!\big(\sqrt{\log_e 9}\,\big)\right)$
is:
If $f:\mathbb{R}\to\mathbb{R}$ is a differentiable function and $f(2)=6$, then
$\displaystyle \lim_{x\to 2}\dfrac{\int_{1}^{f(x)}2t,dt}{\dfrac{6}{x-2}}$ is:
Let f : R $\to$ R be a continuous function. Then $\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\,dx} } \over {{x^2} - {{{\pi ^2}} \over {16}}}}$ is equal to :
Let $f:\left( {0,\infty } \right) \to \left( {0,\infty } \right)$ be a differentiable function such that f(1) = e and $\mathop {\lim }\limits_{t \to x} {{{t^2}{f^2}(x) - {x^2}{f^2}(t)} \over {t - x}} = 0$. If f(x) = 1, then x is equal to :
Let $f,g,h$ be the real valued functions defined on $\mathbb{R}$ as
\[
f(x)=
\begin{cases}
\dfrac{x}{|x|}, & x\neq 0,\\[6pt]
1, & x=0,
\end{cases}
\qquad
g(x)=
\begin{cases}
\dfrac{\sin(x+1)}{x+1}, & x\neq -1,\\[6pt]
1, & x=-1,
\end{cases}
\]
and $h(x)=2\lfloor x\rfloor - f(x)$, where $\lfloor x\rfloor$ is the greatest integer $\le x$.
Then the value of $\displaystyle \lim_{x\to 1} g\!\big(h(x-1)\big)$ is:
For each $x\in\mathbb{R}$, let $[x]$ be the greatest integer less than or equal to $x$.
Then $\displaystyle \lim_{x\to 0^-}\frac{x\left([x]+|x|\right)\sin|x|}{|x|}$ is equal to:
If $\displaystyle \lim_{x\to\infty}\left(\frac{e}{1-e}\left(\frac{1}{e}-\frac{x}{1+x}\right)\right)^{x}=\alpha$, then the value of $\displaystyle \frac{\log_e \alpha}{1+\log_e \alpha}$ equals:
Let $f(x)=
\begin{cases}
x-1, & x \text{ is even},\\
2x, & x \text{ is odd},
\end{cases}\quad x\in\mathbb N.$
If for some $a\in\mathbb N$, $f(f(f(a)))=21$, then
$\displaystyle \lim_{x\to a}\Big\{\dfrac{|x|^{3}}{a}-\Big\lfloor\dfrac{x}{a}\Big\rfloor\Big\}$ is equal to:
For each $t\in\mathbb{R}$, let $[t]$ be the greatest integer less than or equal to $t$.
Then
$\displaystyle \lim_{x\to 1^{+}}\frac{\big(1-|x|+|\sin|1-x||\big)\,\sin\!\left(\tfrac{\pi}{2}[\,1-x\,]\right)}{|1-x|\,[\,1-x\,]}$ is:
If $\displaystyle \lim_{x\to 1^{+}}\frac{(x-1)\big(6+\lambda\cos(x-1)\big)+\mu\sin(1-x)}{(x-1)^{3}}=-1$, where $\lambda,\mu\in\mathbb{R}$, then $\lambda+\mu$ is equal to