Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

JEE MAIN Previous Year Questions (PYQs)

JEE MAIN Limit PYQ


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0}\frac{\sin(\pi \cos^{2}x)}{x^{2}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2014 (Offline) PYQ

Solution


JEE MAIN PYQ
$\lim_{x \to 1} \left( \dfrac{\int_{0}^{(x-1)^{2}} t \cos(t^{2}) \, dt}{(x-1)\sin(x-1)} \right)$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 6 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
Let $\beta=\lim_{x\to 0}\dfrac{\alpha x-(e^{3x}-1)}{\alpha x(e^{3x}-1)}$ for some $\alpha\in\mathbb{R}$. Then the value of $\alpha+\beta$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\lim_{x\to 0}\dfrac{x+2\sin x}{\sqrt{x^{2}+2\sin x+1}-\sqrt{\sin^{2}x-x+1}}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let f : R $\to$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to\infty}\frac{(2x^{2}-3x+5),(3x-1)^{x/2}}{(3x^{2}+5x+4),\sqrt{(3x+2)^{x}}}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0}\frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2013 (Offline) PYQ

Solution


JEE MAIN PYQ
Let $f$ be a differentiable function on $\mathbb{R}$ such that $f(2)=1,\ f'(2)=4$. Let $\displaystyle \lim_{x\to 0}\big(f(2+x)\big)^{\frac{3}{x}}=e^{\alpha}$. Then the number of times the curve $y=4x^3-4x^2-4(\alpha-7)x-\alpha$ meets the $x$-axis is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $[x]$ denote the greatest integer less than or equal to $x$. Then $\displaystyle \lim_{x\to 0}\frac{\tan(\pi\sin^{2}x)+\left(|x|-\sin(x[x])\right)^{2}}{x^{2}}$ :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (11 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0^{+}}\frac{\tan\big(5x^{1/5}\big),\ln(1+3x^{2})}{\big(\tan^{-1}(3\sqrt{2})\big),\big(e^{x\sqrt{3}}-1\big)}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $a_{1},a_{2},a_{3},\ldots,a_{n}$ be $n$ positive consecutive terms of an arithmetic progression. If $d>0$ is its common difference, then \[ \lim_{n\to\infty}\sqrt{\frac{d}{n}} \left(\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}} +\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}} +\cdots +\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}\right) \] is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (6 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x \to 0} \csc x \left( \sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 x + \sin x + 4} \right)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the function $f(x)=\dfrac{\sin 3x+\alpha\sin x-\beta\cos 3x}{x^{3}},; x\in\mathbb{R},$ is continuous at $x=0$, then $f(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^{2} & 2x \\ \tan x & x & 1 \end{vmatrix}$, then $\lim_{x \to 0} \dfrac{f'(x)}{x}$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
\[ \lim_{n\to\infty} \left\{ \left(2^{\tfrac12}-2^{\tfrac13}\right)\left(2^{\tfrac12}-2^{\tfrac15}\right)\cdots\left(2^{\tfrac12}-2^{\tfrac{1}{2n+1}}\right) \right\} \] is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (6 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $a=\displaystyle\lim_{x\to 0}\dfrac{\sqrt{\,1+\sqrt{\,1+x^{2}\,}\,}-\sqrt{2}}{x^{2}}$ and $b=\displaystyle\lim_{x\to 0}\dfrac{\sin^{2}x}{\sqrt{2}-\sqrt{\,1+\cos x\,}}$, then the value of $ab^{3}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (27 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$ \displaystyle \lim_{x\to 0} \left( \frac{1-\cos^2(3x)}{\cos^3(4x)} \right)\left( \frac{\sin^3(4x)}{(\log_e(2x+1))^5} \right) \text{ is equal to } \underline{\ \ \ \ \ \ \ \ \ \ }. $





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0}\frac{x\cot(4x)}{\sin^{2}x\;\cot^{2}(2x)}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (11 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
For some $a, b,$ let $f(x)=\left|\begin{array}{ccc}\mathrm{a}+\frac{\sin x}{x} & 1 & \mathrm{~b} \\ \mathrm{a} & 1+\frac{\sin x}{x} & \mathrm{~b} \\ \mathrm{a} & 1 & \mathrm{~b}+\frac{\sin x}{x}\end{array}\right|, x \neq 0, \lim \limits_{x \rightarrow 0} f(x)=\lambda+\mu \mathrm{a}+\nu \mathrm{b}.$ Then $(\lambda+\mu+v)^2$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x\to0}\frac{3+a\sin x+b\cos x+\log_e(1-x)}{3\tan^2 x}=\frac{1}{3}$, then $2a-b$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (27 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0} \frac{x\tan 2x - 2x\tan x}{(1-\cos 2x)^{2}}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (15 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha$, $\beta$ are the distinct roots of x2 + bx + c = 0, then $\mathop {\lim }\limits_{x \to \beta } {{{e^{2({x^2} + bx + c)}} - 1 - 2({x^2} + bx + c)} \over {{{(x - \beta )}^2}}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let f(x) be a polynomial function such that $f(x) + f'(x) + f''(x) = {x^5} + 64$. Then, the value of $\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of $\mathop {\lim }\limits_{h \to 0} 2\left\{ {{{\sqrt 3 \sin \left( {{\pi \over 6} + h} \right) - \cos \left( {{\pi \over 6} + h} \right)} \over {\sqrt 3 h\left( {\sqrt 3 \cosh - \sinh } \right)}}} \right\}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
The numbers $\alpha>\beta>0$ are the roots of the equation $a x^{2}+b x+1=0$, and $\displaystyle \lim_{x\to \frac{1}{\alpha}} \left( \frac{1-\cos!\big(x^{2}+bx+a\big)}{2(1-a x)^{2}} \right)^{\tfrac{1}{2}} = \frac{1}{k}!\left(\frac{1}{\beta}-\frac{1}{\alpha}\right).$ Then $k$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\lim_{x \to 0} \dfrac{\alpha e^{x^2} + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \dfrac{2}{3}$, where $\alpha, \beta, \gamma \in \mathbb{R}$, then which of the following is NOT correct?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
For each $t \in \mathbb{R}$, let $[t]$ be the greatest integer less than or equal to $t$. Then $\displaystyle \lim_{x \to 0^{+}} x\left(\left[\frac{1}{x}\right] + \left[\frac{2}{x}\right] + \cdots + \left[\frac{15}{x}\right]\right)$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (Offline) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to \pi/4}\frac{\cot^{3}x-\tan x}{\cos\!\left(x+\frac{\pi}{4}\right)}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{{\tan }^2}x\left( {{{(2{{\sin }^2}x + 3\sin x + 4)}^{{1 \over 2}}} - {{({{\sin }^2}x + 6\sin x + 2)}^{{1 \over 2}}}} \right)} \right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $f:(-\infty,\infty)\setminus{0}\to\mathbb{R}$ be differentiable such that $f'(1)=\lim_{a\to\infty} a^{2}f!\left(\tfrac{1}{a}\right)$. Then $\displaystyle \lim_{a\to\infty}\left(\frac{a(a+1)}{2}\tan^{-1}!\frac{1}{a}+a^{2}-2\log_{e}a\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (6 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {{x^2} - x + 1} - ax} \right) = b$, then the ordered pair (a, b) is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {{x^2} - x + 1} - ax} \right) = b$, then the ordered pair (a, b) is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (31 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle\lim_{x\to0} \dfrac{(27+x)^{1/3}-3}{9-(27+x)^{2/3}}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (16 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to\frac{\pi}{2}} \left( \frac{1}{(x-\frac{\pi}{2})^{2}}\, \frac{\left(\frac{\pi}{3}\right)^{3}}{x^{3}} \int_{0}^{x}\cos\!\left(t^{1/3}\right)\,dt \right)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to1^-}\frac{\sqrt{x}-\sqrt{2\sin^{-1}x}}{\sqrt{1-x}}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to {1 \over {\sqrt 2 }}} {{\sin ({{\cos }^{ - 1}}x) - x} \over {1 - \tan ({{\cos }^{ - 1}}x)}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to 0} {{\cos (\sin x) - \cos x} \over {{x^4}}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{t\to 0}\left(1^{\frac{1}{\sin^2 t}}+2^{\frac{1}{\sin^2 t}}+\cdots+n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of $\displaystyle \lim_{n\to\infty}\sum_{k=1}^{n}\frac{n^{3}}{(n^{2}+k^{2})(n^{2}+3k^{2})}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (30 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Given below are two statements: Statement I: $\displaystyle \lim_{x \to 0} \left( \tan^{-1}x + \log_e \dfrac{\sqrt{1+x}}{1-x} - 2x \right) = \dfrac{2}{5}$ Statement II: $\displaystyle \lim_{x \to 1} \left( x^{\frac{1}{x-1}} \right) = \dfrac{1}{e^2}$ In the light of the above statements, choose the correct answer from the options given below:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to0}\frac{\sin^{2}x}{\sqrt{2}-\sqrt{1+\cos x}}$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let a be an integer such that $\mathop {\lim }\limits_{x \to 7} {{18 - [1 - x]} \over {[x - 3a]}}$ exists, where [t] is greatest integer $\le$ t. Then a is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (27 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $f:[-\tfrac{\pi}{2}, \tfrac{\pi}{2}] \to \mathbb{R}$ be a differentiable function such that $f(0)=\tfrac{1}{2}$. If $\displaystyle \lim_{x \to 0} \frac{x \int_0^x f(t),dt}{e^{x^2} - 1} = \alpha$, then $8\alpha^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (30 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The set of all values of $a$ for which $\displaystyle \lim_{x\to a}\big([x-5]-[2x+2]\big)=0$, where $[\alpha]$ denotes the greatest integer less than or equal to $\alpha$, is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\lim_{x\to \frac{\pi}{2}} \dfrac{\cot x - \cos x}{(\pi - 2x)^3}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (Offline) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {{\pi \over 4} + x} \right)} \right)^{{1 \over x}}}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
Let [t] denote the greatest integer$ \le $ t. If for some $\lambda $ $ \in $ R - {1, 0}, $\mathop {\lim }\limits_{x \to 0} \left| {{{1 - x + \left| x \right|} \over {\lambda - x + \left[ x \right]}}} \right|$ = L, then L isequal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 3 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
The value of $\mathop {\lim }\limits_{x \to {0^ + }} {{{{\cos }^{ - 1}}(x - {{[x]}^2}).{{\sin }^{ - 1}}(x - {{[x]}^2})} \over {x - {x^3}}}$, where [ x ] denotes the greatest integer $ \le $ x is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of $\displaystyle \lim_{n\to\infty} \frac{1+2-3+4+5-6+\cdots+(3n-2)+(3n-1)-3n} {\sqrt{2n^{4}+4n+3}-\sqrt{n^{4}+5n+4}}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (25 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable function satisfying $f'(3)+f'(2)=0$. Then $\displaystyle \lim_{x\to0}\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}\right)^{!1/x}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
$ \displaystyle \lim_{x\to 3} \frac{\sqrt{3x}-3}{\sqrt{2x}-\sqrt{6}} $ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {\left( {\sin \sqrt t } \right)dt} } \over {{x^3}}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (24 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of the limit $\mathop {\lim }\limits_{\theta \to 0} {{\tan (\pi {{\cos }^2}\theta )} \over {\sin (2\pi {{\sin }^2}\theta )}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0}\frac{e^{\,2|\sin x|}-2|\sin x|-1}{x^{2}}$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (31 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of $\mathop {\lim }\limits_{n \to \infty } {{[r] + [2r] + ... + [nr]} \over {{n^2}}}$, where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\mathop {\lim }\limits_{x \to 0} {{{{\sin }^{ - 1}}x - {{\tan }^{ - 1}}x} \over {3{x^3}}}$ is equal to L, then the value of (6L + 1) is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (18 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x\to0}\frac{e^{ax}-\cos(bx)-\dfrac{e^{x}-e^{-x}}{2}}{1-\cos(2x)}=17$, then $5a^2+b^2$ is equal to:






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (13 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $ p = \displaystyle \lim_{x \to 0^{+}} \left(1 + \tan^{2}\sqrt{x}\right)^{\tfrac{1}{x}} $ then $\log p$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (Offline) PYQ

Solution


JEE MAIN PYQ
For $\alpha, \beta, \gamma \in \mathbf{R}$, if $\lim _\limits{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3$, then $\beta+\gamma-\alpha$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the function $f(x) = \left\{ {\matrix{ {a|\pi - x| + 1,x \le 5} \cr {b|x - \pi | + 3,x > 5} \cr } } \right.$
is continuous at x = 5, then the value of a – b is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}\left( {\pi {{\cos }^4}x} \right)} \over {{x^4}}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (31 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $x=2$ be a root of the equation $x^{2}+px+q=0$ and define \[ f(x)= \begin{cases} \dfrac{1-\cos\!\big(x^{2}-4px+q^{2}+8q+16\big)}{(x-2p)^{4}}, & x\ne 2p,\\[6pt] 0, & x=2p. \end{cases} \] Then $\displaystyle \lim_{x\to 2p^{+}} \big[\,f(x)\,\big]$, where $[\cdot]$ denotes the greatest integer function, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x \to 0} \frac{\cos(2x) + a\cos(4x) - b}{x^4}$ is finite, then $(a + b)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha = \mathop {\lim }\limits_{x \to {\pi \over 4}} {{{{\tan }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$ and $\beta = \mathop {\lim }\limits_{x \to 0 } {(\cos x)^{\cot x}}$ are the roots of the equation, ax2 + bx $-$ 4 = 0, then the ordered pair (a, b) is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (31 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0}\ \frac{e^{-(1+2x)^{\tfrac{1}{2x}}}}{x}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $f,g:(0,\infty)\to\mathbb{R}$ be defined by $f(x)=\int_{-x}^{x}\big(|t|-t^{2}\big)e^{-t^{2}}\,dt,\qquad g(x)=\int_{0}^{x^{2}} t^{1/2}e^{-t}\,dt.$ Then the value of $g\!\left( f\!\big(\sqrt{\log_e 9}\,\big)+g\!\big(\sqrt{\log_e 9}\,\big)\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (31 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $f:\mathbb{R}\to\mathbb{R}$ is a differentiable function and $f(2)=6$, then $\displaystyle \lim_{x\to 2}\dfrac{\int_{1}^{f(x)}2t,dt}{\dfrac{6}{x-2}}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let f : R $\to$ R be a continuous function. Then $\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\,dx} } \over {{x^2} - {{{\pi ^2}} \over {16}}}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (1 September Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{y\to 0}\frac{\sqrt{\,1+\sqrt{1+y^{4}}\,}-\sqrt{2}}{y^{4}}$:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f:R \to R$ is given by $f(x) = x + 1$, then the value of $\mathop {\lim }\limits_{n \to \infty } {1 \over n}\left[ {f(0) + f\left( {{5 \over n}} \right) + f\left( {{{10} \over n}} \right) + ...... + f\left( {{{5(n - 1)} \over n}} \right)} \right]$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (20 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $f:\left( {0,\infty } \right) \to \left( {0,\infty } \right)$ be a differentiable function such that f(1) = e and
$\mathop {\lim }\limits_{t \to x} {{{t^2}{f^2}(x) - {x^2}{f^2}(t)} \over {t - x}} = 0$. If f(x) = 1, then x is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 4 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
Let $f,g,h$ be the real valued functions defined on $\mathbb{R}$ as \[ f(x)= \begin{cases} \dfrac{x}{|x|}, & x\neq 0,\\[6pt] 1, & x=0, \end{cases} \qquad g(x)= \begin{cases} \dfrac{\sin(x+1)}{x+1}, & x\neq -1,\\[6pt] 1, & x=-1, \end{cases} \] and $h(x)=2\lfloor x\rfloor - f(x)$, where $\lfloor x\rfloor$ is the greatest integer $\le x$. Then the value of $\displaystyle \lim_{x\to 1} g\!\big(h(x-1)\big)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (30 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x \to \infty} \left(1 + \frac{a}{x} - \frac{4}{x^{2}}\right)^{2x} = e^{3}$, then $a$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x\to1}\frac{x^{4}-1}{x-1}=\lim_{x\to k}\frac{x^{3}-k^{3}}{x^{2}-k^{2}}$, then $k$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x\to1}\frac{x^{2}-ax+b}{x-1}=5$, then $a+b$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {{n^2} - n - 1} + n\alpha + \beta } \right) = 0$, then $8(\alpha+\beta)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
For each $x\in\mathbb{R}$, let $[x]$ be the greatest integer less than or equal to $x$. Then $\displaystyle \lim_{x\to 0^-}\frac{x\left([x]+|x|\right)\sin|x|}{|x|}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0} \frac{(1-\cos 2x)^{2}}{2x\tan x - x\tan 2x}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (10 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\lim_{x \to \tfrac{\pi}{4}} \dfrac{8\sqrt{2} - (\cos x + \sin x)^7}{\sqrt{2} - \sqrt{2}\sin 2x}$ is equal to






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x\to\infty}\left(\frac{e}{1-e}\left(\frac{1}{e}-\frac{x}{1+x}\right)\right)^{x}=\alpha$, then the value of $\displaystyle \frac{\log_e \alpha}{1+\log_e \alpha}$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\displaystyle \lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2015 (Offline) PYQ

Solution


JEE MAIN PYQ
Let $f(x)= \begin{cases} x-1, & x \text{ is even},\\ 2x, & x \text{ is odd}, \end{cases}\quad x\in\mathbb N.$ If for some $a\in\mathbb N$, $f(f(f(a)))=21$, then $\displaystyle \lim_{x\to a}\Big\{\dfrac{|x|^{3}}{a}-\Big\lfloor\dfrac{x}{a}\Big\rfloor\Big\}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (1 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
For each $t\in\mathbb{R}$, let $[t]$ be the greatest integer less than or equal to $t$. Then $\displaystyle \lim_{x\to 1^{+}}\frac{\big(1-|x|+|\sin|1-x||\big)\,\sin\!\left(\tfrac{\pi}{2}[\,1-x\,]\right)}{|1-x|\,[\,1-x\,]}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\lim_{x \to 0} \dfrac{x \left( e^{\tfrac{\sqrt{1+x^{2}+x^{4}}-1}{x}} - 1 \right)}{\sqrt{1+x^{2}+x^{4}} - 1}$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
$ \displaystyle \lim_{x\to\infty} \left\{ \frac{\big(\sqrt{3x+1}+\sqrt{3x-1}\big)^{6}+\big(\sqrt{3x+1}-\sqrt{3x-1}\big)^{6}}{\big(x+\sqrt{x^{2}-1}\big)^{6}+\big(x-\sqrt{x^{2}-1}\big)^{6}} - x^{3} \right\} $ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (31 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \lim_{x\to 1^{+}}\frac{(x-1)\big(6+\lambda\cos(x-1)\big)+\mu\sin(1-x)}{(x-1)^{3}}=-1$, where $\lambda,\mu\in\mathbb{R}$, then $\lambda+\mu$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution



JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...