Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to
$ \text{If } 0 < x < \tfrac{1}{\sqrt{2}} \text{ and } \tfrac{\sin^{-1}x}{\alpha} = \tfrac{\cos^{-1}x}{\beta}, \text{ then the value of } \sin!\left(\tfrac{2\pi\alpha}{\alpha+\beta}\right) \text{ is :}$
The sum of the infinite series $\cot^{-1}\left(\dfrac{7}{4}\right)+\cot^{-1}\left(\dfrac{19}{4}\right)+\cot^{-1}\left(\dfrac{30}{4}\right)+\cot^{-1}\left(\dfrac{67}{4}\right)+\cdots$ is:
The domain of the function $f(x)=\sin^{-1}!\big([,2x^{2}-3,]\big)+\log_{2}!\left(\log_{1/2}(x^{2}-5x+5)\right)$, where $[,\cdot,]$ is the greatest integer function, is:
Considering only the principal values of the inverse trigonometric functions, the domain of the function
$f(x)=\cos^{-1}!\left(\dfrac{x^{2}-4x+2}{x^{2}+3}\right)$ is:
Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation
$\cos^{-1}(x)-2\sin^{-1}(x)=\cos^{-1}(2x)$
is equal to:
Considering only the principal values of inverse trigonometric functions, the number of positive real values of $x$ satisfying
$\tan^{-1}(x)+\tan^{-1}(2x)=\dfrac{\pi}{4}$ is:
If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :
Let $f(x) = {\sin ^{ - 1}}x$ and $g(x) = {{{x^2} - x - 2} \over {2{x^2} - x - 6}}$. If $g(2) = \mathop {\lim }\limits_{x \to 2} g(x)$, then the domain of the function fog is :
Let $g(x) = f(x) + f(1 - x)$ and $f''(x) > 0, \; x \in (0, 1)$.
If $g$ is decreasing in the interval $(0, \alpha)$ and increasing in the interval $(\alpha, 1)$,
then $\tan^{-1}(2\alpha) + \tan^{-1}\!\left(\dfrac{1}{\alpha}\right) + \tan^{-1}\!\left(\dfrac{\alpha + 1}{\alpha}\right)$ is equal to:
If $\alpha=\cos^{-1}\left(\dfrac{3}{5}\right),\ \beta=\tan^{-1}\left(\dfrac{1}{3}\right)$ where $0<\alpha,\beta<\dfrac{\pi}{2}$, then $\alpha-\beta$ is equal to:
The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy ${\sin ^{ - 1}}\left( {{{3x} \over 5}} \right) + {\sin ^{ - 1}}\left( {{{4x} \over 5}} \right) = {\sin ^{ - 1}}x$ is equal to :
If $2y=\left(\cot^{-1}\frac{\sqrt{3}\cos x+\sin x}{\cos x-\sqrt{3}\sin x}\right)^{2},\ x\in\left(0,\frac{\pi}{2}\right)$, then $\dfrac{dy}{dx}$ is equal to:
Let $D$ be the domain of the function $f(x)=\sin^{-1}\!\left(\log_{3x}\!\left(\dfrac{6+2\log_{3}x}{-5x}\right)\right)$.
If the range of the function $g: D \to \mathbb{R}$ defined by $g(x)=x-[x]$ (where $[x]$ is the greatest integer function) is $(\alpha,\beta)$,
then $\alpha^{2}+\dfrac{5}{\beta}$ is equal to:
The number of solutions of the equation ${\sin ^{ - 1}}\left[ {{x^2} + {1 \over 3}} \right] + {\cos ^{ - 1}}\left[ {{x^2} - {2 \over 3}} \right] = {x^2}$, for x$\in$[$-$1, 1], and [x] denotes the greatest integer less than or equal to x, is :
For $\alpha,\beta,\gamma\ne 0$, if
$\sin^{-1}\alpha+\sin^{-1}\beta+\sin^{-1}\gamma=\pi$
and
$(\alpha+\beta+\gamma)\,(\alpha+\beta-\gamma)=3\alpha\beta$,
then $\gamma$ equals:
Let $x = \dfrac{m}{n}$ $(m, n$ are co-prime natural numbers$)$ be a solution of the equation $\cos(2\sin^{-1}x) = \dfrac{1}{9}$ and let $\alpha, \beta$ $(\alpha > \beta)$ be the roots of the equation $mx^2 - nx - m + n = 0$.
Then the point $(\alpha, \beta)$ lies on the line:
Let $a_1=1,\,a_2,\,a_3,\,a_4,\ldots$ be consecutive natural numbers.
Then $\tan^{-1}\!\left(\dfrac{1}{1+a_1a_2}\right)+\tan^{-1}\!\left(\dfrac{1}{1+a_2a_3}\right)+\cdots+\tan^{-1}\!\left(\dfrac{1}{1+a_{2021}a_{2022}}\right)$ is equal to:
$ \alpha = \tan\left(\frac{5\pi}{16} \sin\left(2\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)\right)\right) $
$ \beta = \cos\left(\sin^{-1}\left(\frac{4}{5}\right) + \sec^{-1}\left(\frac{5}{3}\right)\right) $
where the inverse trigonometric functions take principal values.
Then, the equation whose roots are $ \alpha $ and $ \beta $ is :
Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16\!\left((\sec^{-1}x)^2+(\csc^{-1}x)^2\right)$ is:
If $\sin^{-1}\!\left(\dfrac{\alpha}{17}\right)+\cos^{-1}\!\left(\dfrac{4}{5}\right)-\tan^{-1}\!\left(\dfrac{77}{36}\right)=0,\ 0<\alpha<13$, then $\sin^{-1}(\sin\alpha)+\cos^{-1}(\cos\alpha)$ is equal to:
If $\cos^{-1}x-\cos^{-1}\left(\dfrac{y}{2}\right)=\alpha$, where $-1\le x\le1,\ -2\le y\le2,\ x\le\dfrac{y}{2}$, then for all $x,y$, the value of $4x^{2}-4xy\cos\alpha+y^{2}$ is:
If the domain of the function $f(x) = {{{{\cos }^{ - 1}}\sqrt {{x^2} - x + 1} } \over {\sqrt {{{\sin }^{ - 1}}\left( {{{2x - 1} \over 2}} \right)} }}$ is the interval ($\alpha$, $\beta$], then $\alpha$ + $\beta$ is equal to :
If S is the sum of the first 10 terms of the series ${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$then tan(S) is equal to :
Let $(a,b)\subset(0,2\pi)$ be the largest interval for which $\sin^{-1}(\sin\theta)-\cos^{-1}(\sin\theta)>0,\ \theta\in(0,2\pi)$, holds.
If $\alpha x^{2}+\beta x+\sin^{-1}(x^{2}-6x+10)+\cos^{-1}(x^{2}-6x+10)=0$ and $\alpha-\beta=b-a$, then $\alpha$ is equal to:
Let $S$ be the set of all solutions of the equation $\cos^{-1}(2x)-2\cos^{-1}\!\big(\sqrt{1-x^{2}}\big)=\pi,\ x\in\left[-\dfrac{1}{2},\,\dfrac{1}{2}\right]$. Then $\displaystyle \sum_{x\in S} 2\sin^{-1}(x^{2}-1)$ is equal to: