$S = \{\, x \in [-6,3] \setminus \{-2,2\} \;:\; \dfrac{|x+3|-1}{|x|-2} \geq 0 \,\}$
$T = \{\, x \in \mathbb{Z} \;:\; x^{2} - 7|x| + 9 \leq 0 \,\}$
Then the number of elements in $S \cap T$ is :
Let $f:R \to R$ and $g:R \to R$ be two functions defined by $f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$ and $g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$. Then, for which of the following range of $\alpha$, the inequality $f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$ holds ?
Let $S$ be the set of positive integral values of $a$ for which
$\frac{a x^{2}+2(a+1)x+9a+4}{x^{2}-8x+32}<0,\ \forall x\in\mathbb{R}.$
Then, the number of elements in $S$ is:
If the domain of the function $f(x)=\log_e(4x^2+11x+6)+\sin^{-1}(4x+3)+\cos^{-1}\!\left(\dfrac{10x+6}{3}\right)$ is $(\alpha,\beta]$, then $36|\alpha+\beta|$ is equal to: