Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to
Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :
Let $I(x)=\displaystyle \int \frac{x^{2}\big(x\sec^{2}x+\tan x\big)}{(x\tan x+1)^{2}}\,dx.$
If $I(0)=0$, then $I\!\left(\frac{\pi}{4}\right)$ is equal to:
If $\displaystyle \int \frac{\sqrt{\,1-x^{2}\,}}{x^{4}}\,dx = A(x)\left(\sqrt{\,1-x^{2}\,}\right)^{m} + C$, for a suitable chosen integer $m$ and a function $A(x)$, where $C$ is a constant of integration, then $(A(x))^{m}$ equals :
If $f\left( {{{x - 4} \over {x + 2}}} \right) = 2x + 1,$ (x $ \in $ R $-${1, $-$ 2}), then $\int f \left( x \right)dx$ is equal to :
(where C is a constant of integration)
The integral $\int {{{{e^{3{{\log }_e}2x}} + 5{e^{2{{\log }_e}2x}}} \over {{e^{4{{\log }_e}x}} + 5{e^{3{{\log }_e}x}} - 7{e^{2{{\log }_e}x}}}}} dx$, x > 0, is equal to : (where c is a constant of integration)
If $\displaystyle \int \frac{2x+5}{\sqrt{7-6x-x^{2}}},dx = A\sqrt{7-6x-x^{2}} + B\sin^{-1}!\left(\frac{x+3}{4}\right) + C$
(where $C$ is a constant of integration), then the ordered pair $(A,B)$ is equal to :
The integral
$\displaystyle \int \frac{\sin^{2}x \cos^{2}x}{\left(\sin^{5}x + \cos^{3}x \sin^{2}x + \sin^{3}x \cos^{2}x + \cos^{5}x\right)^{2}},dx$
is equal to :
If $\displaystyle \int \frac{\tan x}{1+\tan x+\tan^{2}x},dx = x - \frac{K}{\sqrt{A}}\tan^{-1}\left(\frac{K\tan x + 1}{\sqrt{A}}\right) + C,\ (C\ \text{is a constant of integration})$ then the ordered pair $(K,A)$ is equal to :
If $\displaystyle \int \frac{\tan x}{1+\tan x+\tan^2 x},dx = x - \frac{K}{\sqrt{A}}\tan^{-1}!\left(\frac{K\tan x + 1}{\sqrt{A}}\right) + C,\ (C\text{ is a constant of integration})$ then the ordered pair $(K,A)$ is equal to :
If
$\displaystyle \int \frac{\sin^{2}x+\cos^{2}x}{\sqrt{\sin^{2}x\,\cos^{2}x}\;\sin(x-\theta)}\,dx
= A\sqrt{\cos\theta\,\tan x-\sin\theta}\;+\;B\sqrt{\cos\theta-\sin\theta}\,\cot x + C,$
where $C$ is the integration constant, then $AB$ is equal to:
For $\alpha, \beta, \gamma, \delta \in \mathbb{N}$, if
$\displaystyle \int \left( \left(\dfrac{x}{e}\right)^{2x} + \left(\dfrac{e}{x}\right)^{2x} \right) \log_e x \, dx
= \dfrac{1}{\alpha} \left(\dfrac{x}{e}\right)^{\beta x} - \dfrac{1}{\gamma} \left(\dfrac{e}{x}\right)^{\delta x} + C$,
where $e = \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{n!}$ and $C$ is the constant of integration,
then $\alpha + 2\beta + 3\gamma - 4\delta$ is equal to:
Let $I_n=\int \tan^{n}x,dx,\ (n>1)$.
If $I_4+I_6=a\tan^{5}x+bx^{5}+C$, where $C$ is a constant of integration,
then the ordered pair $(a,b)$ is equal to :
If
$\displaystyle \int \frac{\sin^{3/2}x+\cos^{3/2}x}{\sqrt{\sin^2 x,\cos^2 x},\sin(x-\theta)},dx
= A\sqrt{\cos\theta,\tan x-\sin\theta}+B\sqrt{\cos\theta-\sin\theta,\cot x}+C,$
where $C$ is the integration constant, then $AB$ is equal to:
If $\int {{{\cos x - \sin x} \over {\sqrt {8 - \sin 2x} }}} dx = a{\sin ^{ - 1}}\left( {{{\sin x + \cos x} \over b}} \right) + c$, where c is a constant of integration, thenthe ordered pair (a, b) is equal to :
If $\displaystyle \int \frac{dx}{x^{3}(1+x^{6})^{2/3}}=x,f(x),(1+x^{6})^{1/3}+C$ where $C$ is a constant of integration, then the function $f(x)$ is equal to:
Let
$ \displaystyle \int \frac{2 - \tan x}{3 + \tan x} , dx = \frac{1}{2} \left( \alpha x + \log_e \left| \beta \sin x + \gamma \cos x \right| \right) + C $,
where $C$ is the constant of integration.
Then $\alpha + \dfrac{\gamma}{\beta}$ is equal to:
If
$\displaystyle f\left(\frac{3x-4}{3x+4}\right) = x + 2,; x \ne -\frac{4}{3}$
and
$\displaystyle \int f(x),dx = A\ln|1-x| + Bx + C,$
then the ordered pair $(A,B)$ is equal to
(where $C$ is a constant of integration):
If $\int {{{\sin }^{ - 1}}\left( {\sqrt {{x \over {1 + x}}} } \right)} dx$ = A(x)${\tan ^{ - 1}}\left( {\sqrt x } \right)$ + B(x) + C, where C is a constant of integration, then theordered pair (A(x), B(x)) can be :
If
$\displaystyle \int \frac{dx}{\cos^{3}x\sqrt{2\sin 2x}} = (\tan x)^{A} + C(\tan x)^{B} + k,$
where $k$ is a constant of integration, then $A + B + C$ equals :
If $\displaystyle \int \frac{dx}{(x^{2}-2x+10)^{2}} = A\left(\tan^{-1}\left(\frac{x-1}{3}\right) + \frac{f(x)}{x^{2}-2x+10}\right) + C$ where $C$ is a constant of integration, then:
If $\displaystyle \int e^{x}\!\left(\frac{x\sin^{-1}x}{\sqrt{1-x^{2}}}+\frac{\sin^{-1}x}{(1-x^{2})^{3/2}}+\frac{x}{1-x^{2}}\right)\!dx=g(x)+C$, where $C$ is the constant of integration, then $g\!\left(\dfrac{1}{2}\right)$ equals:
Let $n\ge 2$ be a natural number and $0<\theta<\dfrac{\pi}{2}$. Then
\[
\int \frac{\big(\sin^{n}\theta-\sin\theta\big)^{1/n}\,\cos\theta}{\sin^{\,n+1}\theta}\,d\theta
\]
is equal to (where $C$ is a constant of integration):