The position of a moving car at time t is given by f(t) = at2 + bt + c, t > 0, where a, b and c are realnumbers greater than 1. Then the average speed of the car over the time interval [t1, t2] isattained at the point :
Let the domains of the functions $f(x)=\log_{4}\big(\log_{3}\big(\log_{7}\big(8-\log_{2}(x^{2}+4x+5)\big)\big)\big)$ and $g(x)=\sin^{-1}\left(\dfrac{7x+10}{x-2}\right)$ be $(\alpha,\beta)$ and $[\gamma,\delta]$, respectively. Then $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is equal to
If the maximum value of $a$, for which the function $f_a(x)=\tan^{-1}(2x)-3ax+7$ is non-decreasing in $\left(-\tfrac{\pi}{6},\,\tfrac{\pi}{6}\right)$, is $\bar a$, then $f_{\bar a}\!\left(\tfrac{\pi}{8}\right)$ is equal to :
If f(x + y) = f(x)f(y) and $\sum\limits_{x = 1}^\infty {f\left( x \right)} = 2$ , x, y $ \in $ N, where N is the set of all natural number, then thevalue of${{f\left( 4 \right)} \over {f\left( 2 \right)}}$ is :
Let $f(x)=3\sqrt{x-2}+\sqrt{4-x}$ be a real-valued function.
If $\alpha$ and $\beta$ are respectively the minimum and maximum values of $f$,
then $\alpha^2+2\beta^2$ is equal to:
Let f(x) = 5 – |x – 2| and g(x) = |x + 1|, x $ \in $ R. If f(x) attains maximum value at $\alpha $ and g(x) attains
minimum value at $\beta $, then
$\mathop {\lim }\limits_{x \to -\alpha \beta } {{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)} \over {{x^2} - 6x + 8}}$ is equal to :
For a suitably chosen real constant a, let afunction, $f:R - \left\{ { - a} \right\} \to R$ be defined by$f(x) = {{a - x} \over {a + x}}$. Further suppose that for any realnumber $x \ne - a$ and $f(x) \ne - a$, (fof)(x) = x. Then $f\left( { - {1 \over 2}} \right)$ is equal to :
Let the range of the function
$f(x)=6+16\cos x\cdot \cos\!\left(\frac{\pi}{3}-x\right)\cdot \cos\!\left(\frac{\pi}{3}+x\right)\cdot \sin 3x\cdot \cos 6x,\ x\in\mathbb{R}$
be $[\alpha,\beta]$. Then the distance of the point $(\alpha,\beta)$ from the line $3x+4y+12=0$ is:
If $a\in\mathbb{R}$ and the equation $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$
(where $[x]$ denotes the greatest integer $\le x$) has no integral solution,
then all possible values of $a$ lie in the interval :
Let a relation $R$ on $\mathbb N\times\mathbb N$ be defined by $(x_1,y_1),R,(x_2,y_2)$ iff $x_1\le x_2$ or $y_1\le y_2$. Consider:
(I) $R$ is reflexive but not symmetric.
(II) $R$ is transitive.
Which of the following is true?
Let $\mathbb{N}$ be the set of natural numbers and two functions $f$ and $g$ be defined as $f,g:\mathbb{N}\to\mathbb{N}$ such that
$$
f(n)=
\begin{cases}
\dfrac{n+1}{2}, & \text{if $n$ is odd},\\[4pt]
\dfrac{n}{2}, & \text{if $n$ is even},
\end{cases}
\qquad
g(n)=n-(-1)^n.
$$
Then $f\circ g$ is –
$ \text{Let } f:\mathbb{R}\to\mathbb{R} \text{ be a function defined as }
f(x)=a\sin\!\left(\frac{\pi\lfloor x\rfloor}{2}\right)+\lfloor 2-x\rfloor,\ a\in\mathbb{R},
\text{ where } \lfloor t\rfloor \text{ is the greatest integer } \le t.
\text{ If } \lim_{x\to -1} f(x) \text{ exists, then the value of } \int_{0}^{4} f(x)\,dx \text{ is equal to:}$
Let $f:\mathbb{R}-{0}\to\mathbb{R}$ be a function such that
$f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}.$
If $\displaystyle \lim_{x\to 0}\left(\frac{1}{x} + f(x)\right) = \beta,\ \alpha, \beta \in \mathbb{R},$
then $\alpha + 2\beta$ is equal to :
Let $f(x) = \dfrac{9x^2 + 16}{2^{2x+1} + 2^{x+4} + 32}$.
Then the value of $8 \big( f\left(\dfrac{1}{15}\right) + f\left(\dfrac{2}{15}\right) + \dots + f\left(\dfrac{50}{15}\right) \big)$ is equal to
Let f : R $\to$ R be defined as$f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$ where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $\lambda$ + $\mu$ is equal to :
Let the sets A and B denote the domain and range respectively of the function $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$, where $\lceil x\rceil$ denotes the smallest integer greater than or equal to $x$. Then among the statements
Let [t] denote the greatest integer less than or equal to t. Let f(x) = x $-$ [x], g(x) = 1 $-$ x + [x], and h(x) = min{f(x), g(x)}, x $\in$ [$-$2, 2]. Then h is :
Let $f:[0,\infty ) \to [0,\infty )$ be defined as $f(x) = \int_0^x {[y]dy} $ where [x] is the greatest integer less than or equal to x. Which of the following is true?
In a bolt factory, machines $A, B$ and $C$ manufacture respectively $20 \%, 30 \%$ and $50 \%$ of the total bolts. Of their output 3, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine $C$ is :
where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :
A function f(x) is given by $f(x) = {{{5^x}} \over {{5^x} + 5}}$, then the sum of the series $f\left( {{1 \over {20}}} \right) + f\left( {{2 \over {20}}} \right) + f\left( {{3 \over {20}}} \right) + ....... + f\left( {{{39} \over {20}}} \right)$ is equal to :
$ \text{Let } \alpha, \beta \text{ and } \gamma \text{ be three positive real numbers. Let } f(x) = \alpha x^{5} + \beta x^{3} + \gamma x,; x \in \mathbb{R} \text{ and } g : \mathbb{R} \to \mathbb{R} \text{ be such that } g(f(x)) = x \text{ for all } x \in \mathbb{R}. \text{ If } a_{1}, a_{2}, a_{3}, \ldots, a_{n} \text{ be in arithmetic progression with mean zero, then the value of } f!\left(g!\left(\frac{1}{n}\sum_{i=1}^{n} f(a_{i})\right)\right) \text{ is equal to:}$
Let $\alpha$ and $\beta$ be the roots of x2 $-$ 6x $-$ 2 = 0. If an = $\alpha$$n $-$ $\beta$n for n $ \ge $ 1, then the value of ${{{a_{10}} - 2{a_8}} \over {3{a_9}}}$ is :
The number of functions $f$ from $\{1,2,3,\ldots,20\}$ onto $\{1,2,3,\ldots,20\}$ such that $f(k)$ is a multiple of $3$, whenever $k$ is a multiple of $4$, is:
Let $f:\mathbb{R}\setminus\{-\tfrac{1}{2}\}\to\mathbb{R}$ and
$g:\mathbb{R}\setminus\{-\tfrac{5}{2}\}\to\mathbb{R}$ be defined as
$f(x)=\dfrac{2x+3}{2x+1}$ and $g(x)=\dfrac{|x|+1}{2x+5}$.
Then, the domain of the function $f\circ g$ is:
Let $g(x)=3f\!\left(\dfrac{x}{3}\right)+f(3-x)$ and $f''(x)>0$ for all $x\in(0,3)$.
If $g$ is decreasing in $(0,\alpha)$ and increasing in $(\alpha,3)$, then $8\alpha$ is:
If $f(x)=\left\{\begin{array}{cc}2+2 x, & -1 \leq x < 0 \\ 1-\frac{x}{3}, & 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x, & 0 < x \leq 1\end{array}\right.\right.$, then range of $(f o g)(x)$ is
Consider the function $f:\left[\dfrac{1}{2},1\right]\to\mathbb{R}$ defined by
$f(x)=4\sqrt{2}\,x^{3}-3\sqrt{2}\,x-1$. Consider the statements
(I) The curve $y=f(x)$ intersects the $x$-axis exactly at one point.
(II) The curve $y=f(x)$ intersects the $x$-axis at $x=\cos\!\left(\dfrac{\pi}{12}\right)$.
Then
Let $f:\mathbb{R}\to\mathbb{R}$ be a function defined by $f(x)=(2+3a)x^{2}+\dfrac{a+2}{a-1}x+b$, $a\ne1$. If
$f(x+y)=f(x)+f(y)+1-\dfrac{2}{7}xy$, then the value of $28\displaystyle\sum_{i=1}^{5}\lvert f(i)\rvert$ is
Let $f(x) = {{x - 1} \over {x + 1}},\,x \in R - \{ 0, - 1,1\} $. If ${f^{n + 1}}(x) = f({f^n}(x))$ for all n $\in$ N, then ${f^6}(6) + {f^7}(7)$ is equal to
Let $f:\mathbb{R}-{0}\to(-\infty,1)$ be a polynomial of degree $2$, satisfying $f(x)f\left(\dfrac{1}{x}\right)=f(x)+f\left(\dfrac{1}{x}\right)$.
If $f(K)=-2K$, then the sum of squares of all possible values of $K$ is:
Let $f$ be a real valued continuous function defined on the positive real axis such that $g(x)=\int\limits_0^x t f(t) d t$. If $g\left(x^3\right)=x^6+x^7$, then value of $\sum\limits_{r=1}^{15} f\left(r^3\right)$ is :
et $f:[0,3]\to A$ be defined by
$,f(x)=2x^3-15x^2+36x+7,$
and $g:[0,\infty)\to B$ be defined by
$,g(x)=\dfrac{x^{2025}}{x^{2025}+1}.$
If both the functions are onto and
$S={x\in\mathbb{Z},:,x\in A\ \text{or}\ x\in B},$
then $n(S)$ is equal to:
The range of a$\in$R for which the function f(x) = (4a $-$ 3)(x + loge 5) + 2(a $-$ 7) cot$\left( {{x \over 2}} \right)$ sin2$\left( {{x \over 2}} \right)$, x $\ne$ 2n$\pi$, n$\in$N has critical points, is :
Let $f(x) = \lfloor x^2 - x \rfloor + | -x + \lfloor x \rfloor |$, where $x \in \mathbb{R}$
and $\lfloor t \rfloor$ denotes the greatest integer less than or equal to $t$.
Then, $f$ is:
Let f : R $ \to $ R be a function which satisfies f(x + y) = f(x) + f(y) $\forall $ x, y $ \in $ R. If f(1) = 2 and g(n) = $\sum\limits_{k = 1}^{\left( {n - 1} \right)} {f\left( k \right)} $, n $ \in $ N then the value of n, for which g(n) = 20, is
Let $f(x)$ be a function such that $f(x+y)=f(x)\cdot f(y)$ for all $x,y\in \mathbb{N}$.
If $f(1)=3$ and $\displaystyle \sum_{k=1}^{n} f(k)=3279$, then the value of $n$ is:
Let $f(x)$ be a function such that $f(x+y)=f(x)\cdot f(y)$ for all $x,y\in \mathbb{N}$.
If $f(1)=3$ and $\displaystyle \sum_{k=1}^{n} f(k)=3279$, then the value of $n$ is:
If $f(x)=\dfrac{2^{2x}}{2^{2x}+2},\ x\in\mathbb{R}$, then
$f\!\left(\dfrac{1}{2023}\right)+f\!\left(\dfrac{2}{2023}\right)+\cdots+f\!\left(\dfrac{2022}{2023}\right)$ is equal to:
If the domain of the function $f(x)=\cos^{-1}!\left(\dfrac{2-|x|}{4}\right)+{\log_e(3-x)}^{-1}$ is $[-\alpha,\beta)-{\gamma}$, then $\alpha+\beta+\gamma$ equals:
If $f(x)=\left\{\begin{array}{cc}2+2 x, & -1 \leq x < 0 \\ 1-\frac{x}{3}, & 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x, & 0 < x \leq 1\end{array}\right.\right.$, then range of $(f o g)(x)$
Let $f$ and $g$ be two functions defined by
\[
f(x)=
\begin{cases}
x+1, & x<0,\\[2pt]
|x-1|, & x\ge 0
\end{cases}
\qquad\text{and}\qquad
g(x)=
\begin{cases}
x+1, & x<0,\\[2pt]
1, & x\ge 0.
\end{cases}
\]
Then $(g\circ f)(x)$ is:
Let $f:\mathbb{R}\setminus{0}\to\mathbb{R}$ satisfy $f!\left(\dfrac{x}{y}\right)=\dfrac{f(x)}{f(y)}$ for all $x,y$ with $f(y)\neq 0$.
If $f'(1)=2024$, then which of the following is true?
Let $f(x)=a^{x}\ (a>0)$ be written as $f(x)=f_{1}(x)+f_{2}(x)$, where $f_{1}(x)$ is an even function and $f_{2}(x)$ is an odd function. Then $f_{1}(x+y)+f_{1}(x-y)$ equals:
Let $f(x)=\left\{\begin{array}{ccc}-\mathrm{a} & \text { if } & -\mathrm{a} \leq x \leq 0 \\ x+\mathrm{a} & \text { if } & 0< x \leq \mathrm{a}\end{array}\right.$ where $\mathrm{a}> 0$ and $\mathrm{g}(x)=(f(|x|)-|f(x)|) / 2$. Then the function $g:[-a, a] \rightarrow[-a, a]$ is
If f : R $ \to $ R is a function defined by f(x)= [x - 1] $\cos \left( {{{2x - 1} \over 2}} \right)\pi $, where [.] denotes the greatestinteger function, then f is :
If the domain of the function
$f(x)=\log_e\!\left(\frac{2x+3}{4x^{2}+x-3}\right)+\cos^{-1}\!\left(\frac{2x-1}{x+2}\right)$
is $(\alpha,\beta)$, then the value of $5\beta-4\alpha$ is:
Let $f : R → R$ be defined as $f (x) = 2x – 1$ and $g : R - {1} → R$ be defined as g(x) =${{x - {1 \over 2}} \over {x - 1}}$.Then the composition function $f(g(x))$ is :
The function $f : \mathbb{N} \to \mathbb{N}$ defined by
$f(x) = x - 5\left\lfloor \dfrac{\pi x}{5} \right\rfloor$,
where $\mathbb{N}$ is the set of natural numbers and $\lfloor x \rfloor$ denotes the greatest integer $\le x$, is:
Let $f:\mathbb{R}\to\mathbb{R}$ be a function defined by
$f(x)=\log_{\sqrt{m}}\!\left(\sqrt{2}(\sin x-\cos x)+m-2\right)$, for some $m$, such that the range of $f$ is $[0,2]$.
Then the value of $m$ is ______
$ \text{For } x\in\mathbb{R}, \text{ two real valued functions } f(x) \text{ and } g(x) \text{ are such that } g(x)=\sqrt{x}+1 \text{ and } (f\circ g)(x)=x+3-\sqrt{x}. \text{ Then } f(0) \text{ is equal to: } $
Let $f(x)=2x^{n}+\lambda$, $\lambda\in \mathbb{R}$, $n\in \mathbb{N}$, and $f(4)=133$, $f(5)=255$.
Then the sum of all the positive integer divisors of $\bigl(f(3)-f(2)\bigr)$ is:
If $f(x)=\dfrac{4x+3}{6x-4}$, $x\ne\dfrac{2}{3}$, and $(f\circ f)(x)=g(x)$,
where $g:\mathbb{R}-\left\{\dfrac{2}{3}\right\}\to\mathbb{R}-\left\{\dfrac{2}{3}\right\}$,
then $(g\circ g\circ g)(4)$ is equal to:
Let $\displaystyle \sum_{k=1}^{10} f(a+k) = 16(2^{10} - 1)$ where the function $f$ satisfies
$f(x+y) = f(x)f(y)$ for all natural numbers $x, y$ and $f(1) = 2$.
Then the natural number $a$ is
The real valued function $f(x) = {{\cos e{c^{ - 1}}x} \over {\sqrt {x - [x]} }}$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to :
If the functions are defined as $f(x) = \sqrt x $ and $g(x) = \sqrt {1 - x} $, then what is the common domain of the following functions :f + g, f $-$ g, f/g, g/f, g $-$ f where $(f \pm g)(x) = f(x) \pm g(x),(f/g)x = {{f(x)} \over {g(x)}}$
Let the range of the function $f(x)=\dfrac{1}{2+\sin3x+\cos3x},\ x\in\mathbb{R}$ be $[a,b]$. If $\alpha$ and $\beta$ are respectively the A.M. and the G.M. of $a$ and $b$, then $\dfrac{\alpha}{\beta}$ is equal to:
Let f : R $-$ {3} $ \to $ R $-$ {1} be defined by f(x) = ${{x - 2} \over {x - 3}}$.Let g : R $ \to $ R be given as g(x) = 2x $-$ 3. Then, the sum of all the values of x for which f$-$1(x) + g$-$1(x) = ${{13} \over 2}$ is equal to :
Consider a function $f:\mathbb{N}\to\mathbb{R}$ satisfying
\[
f(1)+2f(2)+3f(3)+\cdots+xf(x)=x(x+1)f(x),\quad x\ge 2,
\]
with $f(1)=1$. Then
\[
\frac{1}{f(2022)}+\frac{1}{f(2028)}
\]
is equal to:
If the function $f:(-\infty,-1]\to(a,b]$ defined by $f(x)=e^{x^{3}-3x+1}$ is one–one and onto,
then the distance of the point $P(2b+4,\ a+2)$ from the line $x+e^{-3}y=4$ is:
Let [ x ] denote the greatest integer $\le$ x, where x $\in$ R. If the domain of the real valued function $f(x) = \sqrt {{{\left| {[x]} \right| - 2} \over {\left| {[x]} \right| - 3}}} $ is ($-$ $\infty$, a) $]\cup$ [b, c) $\cup$ [4, $\infty$), a < b < c, then the value of a + b + c is :
If $A=\begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$, then the matrix $A^{-50}$ when $\theta=\dfrac{\pi}{12}$ is equal to:
For $x \in \mathbb{R}, x \ne 0$, let $f_{0}(x) = \dfrac{1}{1 - x}$ and $f_{n+1}(x) = f_{0}(f_{n}(x)),; n = 0,1,2,\ldots$ Then the value of $f_{100}(3) + f_{1}\left(\dfrac{2}{3}\right) + f_{2}\left(\dfrac{3}{2}\right)$ is equal to:
If the domain of the function $f(x) = \log_e\left(\dfrac{2x - 3}{5 + 4x}\right) + \sin^{-1}\left(\dfrac{4 + 3x}{2 - x}\right)$ is $[\alpha, \beta]$, then $\alpha^2 + 4\beta$ is equal to:
Let $f(x)=e^{x}-x$ and $g(x)=x^{2}-x,\ \forall x\in\mathbb{R}$. Then the set of all $x\in\mathbb{R}$ where the function $h(x)=(f\circ g)(x)$ is increasing, is:
Let $f:R - \left\{ {{\alpha \over 6}} \right\} \to R$ be defined by $f(x) = {{5x + 3} \over {6x - \alpha }}$. Then the value of $\alpha$ for which (fof)(x) = x, for all $x \in R - \left\{ {{\alpha \over 6}} \right\}$, is :
Let f(x) = loge(sin x), (0 < x < $\pi $) and g(x) = sin–1
(e–x
), (x $ \ge $ 0). If $\alpha $ is a positive real number such that
a = (fog)'($\alpha $) and b = (fog)($\alpha $), then :
If the domain of the function
$f(x)=\sqrt{\dfrac{x^{2}-25}{4-x^{2}}}+\log_{10}(x^{2}+2x-15)$
is $(-\infty,\alpha)\cup[\beta,\infty)$, then $\alpha^{2}+\beta^{3}$ is equal to:
Let [x] denote the greatest integer less than or equal to x. Then, the values of x$\in$R satisfying the equation ${[{e^x}]^2} + [{e^x} + 1] - 3 = 0$ lie in the interval :
For any real number $x$, let $[x]$ denote the largest integer less than equal to $x$. Let $f$ be a real valued function defined on the interval $[-10,10]$ by $f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$Then the value of $\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$ is :
If the domain of the function $f(x)=\log_{7}!\big(1-\log_{4}(x^{2}-9x+18)\big)$ is $(\alpha,\beta)\cup(\gamma,\delta)$, then $\alpha+\beta+\gamma+\delta$ is equal to
Let g : N $\to$ N be defined as g(3n + 1) = 3n + 2, g(3n + 2) = 3n + 3, g(3n + 3) = 3n + 1, for all n $\ge$ 0. Then which of the following statements is true?
Let $f:[0,\infty ) \to [0,\infty )$ be defined as $f(x) = \int_0^x {[y]dy} $ where [x] is the greatest integer less than or equal to x. Which of the following is true?
Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous function satisfying $f(0)=1$ and $f(2x)-f(x)=x$ for all $x\in\mathbb{R}$. If $\lim_{n\to\infty}{f(x)-f\left(\dfrac{x}{2^{n}}\right)}=G(x)$, then $\displaystyle \sum_{r=1}^{10} G(r^{2})$ is equal to
For $x \in (0, 3/2)$, let $f(x) = \sqrt{x}$, $g(x) = \tan x$ and $h(x) = \dfrac{1 - x^2}{1 + x^2}$.
If $\phi(x) = (h \circ f \circ g)(x)$, then $\phi\left(\dfrac{\pi}{3}\right)$ is equal to :
Let $f(x)=x^5+2e^{x/4}$ for all $x\in\mathbb R$.
Consider a function $g(x)$ such that $(g\circ f)(x)=x$ for all $x\in\mathbb R$.
Then the value of $8g'(2)$ is:
If the domain of the function
$\sin^{-1}\!\left(\dfrac{3x-22}{2x-19}\right)+\log_e\!\left(\dfrac{3x^2-8x+5}{x^2-3x-10}\right)$
is $(\alpha,\beta)$, then $3\alpha+10\beta$ is equal to:
Let $f(x)=
\begin{cases}
x^{3}-x^{2}+10x-7, & x\le 1,\\
-2x+\log_{2}(b^{2}-4), & x>1.
\end{cases}$
Then the set of all values of $b$ for which $f(x)$ has maximum value at $x=1$ is:
Let $f,g:(1,\infty)\to\mathbb{R}$ be defined as $f(x)=\dfrac{2x+3}{5x+2}$ and $g(x)=\dfrac{2-3x}{1-x}$. If the range of the function $f\circ g:[2,4]\to\mathbb{R}$ is $[\alpha,\beta]$, then $\dfrac{1}{\beta-\alpha}$ is equal to