Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

JEE MAIN Previous Year Questions (PYQs)

JEE MAIN Differentiation PYQ


JEE MAIN PYQ
Let $f(x)=2x+\tan^{-1}x$ and $g(x)=\log_{e}\!\big(\sqrt{1+x^{2}}+x\big),\ x\in[0,3]$. Then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (1 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $y(x)=x^{x},\ x>0$, then $y''(2)-2y'(2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (1 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
The derivative of ${\tan ^{ - 1}}\left( {{{\sin x - \cos x} \over {\sin x + \cos x}}} \right)$, with respect to ${x \over 2}$ , where $\left( {x \in \left( {0,{\pi \over 2}} \right)} \right)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $y=\sec(\tan^{-1}x)$, then $\dfrac{dy}{dx}$ at $x=1$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2013 (Offline) PYQ

Solution


JEE MAIN PYQ
Let $f(x)=x^{5}+2x^{3}+3x+1,; x\in\mathbb{R}$, and let $g(x)$ be a function such that $g(f(x))=x$ for all $x\in\mathbb{R}$. Then $\dfrac{g'(7)}{g'(7)}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f'(x) $ \ne $ 0 for all x $ \in $ R. If $\left| {\matrix{ {f(x)} & {f'(x)} \cr {f'(x)} & {f''(x)} \cr } } \right|$ = 0, for all x$ \in $R, then the value of f(1) lies in the interval :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (24 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $2x^{y}+3y^{x}=20$, then $\dfrac{dy}{dx}$ at $(2,2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (6 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let y = y(x) be the solution of the differential equation ${{dy} \over {dx}} = 1 + x{e^{y - x}}, - \sqrt 2 < x < \sqrt 2 ,y(0) = 0$ then, the minimum value of $y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (25 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
The local maximum value of the function $f(x) = {\left( {{2 \over x}} \right)^{{x^2}}}$, x > 0, is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}$. Then $f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f(x)=\sin^{-1}\left(\dfrac{2x^{3}}{1+9x^{2}}\right)$, then $f'!\left(-\dfrac{1}{2}\right)$ equals





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (15 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $x(t) = 2\sqrt{2}\cos t \sqrt{\sin 2t}$ and $y(t) = 2\sqrt{2}\sin t \sqrt{\sin 2t}, \; t \in (0,\tfrac{\pi}{2}).$ Then $\dfrac{1+\left(\tfrac{dy}{dx}\right)^2}{\tfrac{d^2y}{dx^2}}$ at $t=\tfrac{\pi}{4}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (28 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
et y = y(x) be the solution of the differential equation ${{dy} \over {dx}} = 2(y + 2\sin x - 5)x - 2\cos x$ such that y(0) = 7. Then y($\pi$) is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let f : R $\to$ R be defined as $f(x) = {x^3} + x - 5$. If g(x) is a function such that $f(g(x)) = x,\forall 'x' \in R$, then g'(63) is equal to ________________.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let us consider a curve, y = f(x) passing through the point ($-$2, 2) and the slope of the tangent to the curve at any point (x, f(x)) is given by f(x) + xf'(x) = x2. Then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
A wire of length 20 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a regular hexagon. Then the length of the side (in meters) of the hexagon, so that the combined area of the square and the hexagon is minimum, is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
Suppose $f(x)=\dfrac{(2^{x}+2^{-x})\tan x\,\sqrt{\tan^{-1}(x^{2}-x+1)}}{(7x^{2}+3x+1)^{3}}$. Then the value of $f'(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the solution curve of the differential equation (2x $-$ 10y3)dy + ydx = 0, passes through the points (0, 1) and (2, $\beta$), then $\beta$ is a root of the equation :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
A box open from top is made from a rectangular sheet of dimension a x b by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
The maximum slope of the curve $y = {1 \over 2}{x^4} - 5{x^3} + 18{x^2} - 19x$ occurs at the point :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f(x) = \displaystyle\int_{0}^{x} t(\sin x - \sin t),dt$ then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (16 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The rate of growth of bacteria in a culture is proportional to the number of bacteria present and the bacteria count is 1000 at initial time t = 0. The number of bacteria is increased by 20% in 2 hours. If the population of bacteria is 2000 after ${k \over {{{\log }_e}\left( {{6 \over 5}} \right)}}$ hours, then ${\left( {{k \over {{{\log }_e}2}}} \right)^2}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $y(x)=\cot^{-1}\!\left(\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right),\; x\in\left(\tfrac{\pi}{2},\pi\right)$, then $\dfrac{dy}{dx}$ at $x=\tfrac{5\pi}{6}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $f$ be a differentiable function such that $f(1)=2$ and $f'(x)=f(x)$ for all $x\in\mathbb{R}$. If $h(x)=f(f(x))$, then $h'(1)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Suppose for a differentiable function $h$, $h(0)=0$, $h(1)=1$ and $h'(0)=h'(1)=2$. If $g(x)=h(e^{x}),e^{h(x)}$, then $g'(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (6 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $g:\mathbb{R}\to\mathbb{R}$ be a non-constant twice-differentiable function such that $g'\!\left(\tfrac12\right)=g'\!\left(\tfrac32\right)$. If a real-valued function $f$ is defined as $f(x)=\dfrac12\,[\,g(x)+g(2-x)\,]$, then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (30 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let f : S $ \to $ S where S = (0, $\infty $) be a twice differentiable function such that f(x + 1) = xf(x). If g : S $ \to $ R be defined as g(x) = loge f(x), then the value of |g''(5) $-$ g''(1)| is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (16 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
Suppose$ \displaystyle f(x)=\frac{(x^{2}+2-x),\tan x;\sqrt{\tan^{-1}!\left(\frac{x^{2}-x+1}{x}\right)}}{(7x^{2}+3x+1)^{3}}. $ Then the value of $f'(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If for $x\in\left(0,\dfrac14\right)$, the derivative of $\tan^{-1}\left(\dfrac{6x\sqrt{x}}{1-9x^{3}}\right)$ is $\sqrt{x}\cdot g(x)$, then $g(x)$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (Offline) PYQ

Solution


JEE MAIN PYQ
If $\int {{{({x^2} + 1){e^x}} \over {{{(x + 1)}^2}}}dx = f(x){e^x} + C} $, where C is a constant, then ${{{d^3}f} \over {d{x^3}}}$ at x = 1 is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (27 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f(x)=x^{3}-x^{2}f'(1)+x f''(2)-f'''(3),\ x\in\mathbb{R}$, then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $y^{2} + \log_{e}(\cos^{2}x) = y,\; x \in \left(-\tfrac{\pi}{2}, \tfrac{\pi}{2}\right),$ then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 3 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
Let $y(x)=(1+x)(1+x^{2})(1+x^{4})(1+x^{8})(1+x^{16})$. Then $y' - y''$ at $x=-1$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (25 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f(1)=1,\ f'(1)=3$, then the derivative of $f(f(f(x)))+(f(x))^{2}$ at $x=1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If y = ${\left[ {x + \sqrt {{x^2} - 1} } \right]^{15}} + {\left[ {x - \sqrt {{x^2} - 1} } \right]^{15}},$ then (x2 $-$ 1) ${{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
For the differentiable function $f:\mathbb{R}\setminus{0}\to\mathbb{R}$, let $3f(x)+2f!\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-10$. Then $\left|,f(3)+f'!\left(\dfrac{1}{4}\right)\right|$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (13 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $f$ be a polynomial function such that $f(3x) = f'(x)\cdot f''(x)$ for all $x \in \mathbb{R}$. Then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $(\sin x \cos y)(f(2 x+2 y)-f(2 x-2 y))=(\cos x \sin y)(f(2 x+2 y)+f(2 x-2 y))$, for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=\frac{1}{2}$, then the value of $24 f^{\prime \prime}\left(\frac{5 \pi}{3}\right)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (31 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
The functions $f$ and $g$ are twice differentiable on $\mathbb{R}$ such that $f''(x) = g''(x) + 6x$ $f'(1) = 4g'(1) - 3 = 9$ $f(2) = 3g(2) = 12$ Then which of the following is NOT true?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let 'a' be a real number such that the function f(x) = ax2 + 6x $-$ 15, x $\in$ R is increasing in $\left( { - \infty ,{3 \over 4}} \right)$ and decreasing in $\left( {{3 \over 4},\infty } \right)$. Then the function g(x) = ax2 $-$ 6x + 15, x$\in$R has a :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (20 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let f be a twice differentiable function on (1, 6). If f(2) = 8, f’(2) = 5, f’(x) $ \ge $ 1 and f''(x) $ \ge $ 4, for all x $ \in $ (1, 6), then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 4 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
If $f(x)$ is a differentiable function in the interval $(0,\infty)$ such that $f(1) = 1$ and $\displaystyle \lim_{t \to x} \frac{t^{2}f(x) - x^{2}f(t)}{t - x} = 1$, for each $x > 0$, then $f\left(\dfrac{3}{2}\right)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $f(x)$ be a real differentiable function such that $f(0)=1$ and $f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y)$ for all $x, y \in \mathbf{R}$. Then $\sum_\limits{n=1}^{100} \log _e f(n)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
$ \text { If } y(x)=\left|\begin{array}{ccc} \sin x & \cos x & \sin x+\cos x+1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{array}\right|, x \in \mathbb{R} \text {, then } \frac{d^2 y}{d x^2}+y \text { is equal to } $





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $x=3\tan t$ and $y=3\sec t$, then the value of $\dfrac{d^{2}y}{dx^{2}}$ at $t=\dfrac{\pi}{4}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ { - {4 \over 3}{x^3} + 2{x^2} + 3x,} & {x > 0} \cr {3x{e^x},} & {x \le 0} \cr } } \right.$. Then f is increasing function in the interval





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (22 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
The solution of the differential equation${{dy} \over {dx}} - {{y + 3x} \over {{{\log }_e}\left( {y + 3x} \right)}} + 3 = 0$ is:(where c is a constant of integration)





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 4 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
The slope of the tangent to a curve $C: y=y(x)$ at any point $(x, y)$ on it is $\dfrac{2e^{2x}-6e^{-x}+9}{2+9e^{-2x}}$. If $C$ passes through the points $\left(0, \tfrac{1}{2}+\tfrac{\pi}{2\sqrt{2}}\right)$ and $\left(\alpha, \tfrac{1}{2}e^{2\alpha}\right)$, then $e^{\alpha}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
The derivative of ${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$ with respect to ${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$ at x = ${1 \over 2}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
If x = 1 is a critical point of the function f(x) = (3x2 + ax – 2 – a)ex, then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
Let \(f:\mathbb{R}\to\mathbb{R}\) be a function such that \[ f(x)=x^{3}+x^{2}f'(1)+x f'(2)+f''(3),\qquad x\in\mathbb{R}. \] Then \(f(2)\) equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \int_{0}^{x} f(t)\,dt \;=\; x^{2} \;+\; \int_{x}^{1} t^{2} f(t)\,dt$, then $f'\!\left(\tfrac{1}{2}\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Evening Shift) PYQ

Solution



JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...