Let $f(x)=\begin{vmatrix}
1+\sin^{2}x & \cos^{2}x & \sin 2x\\
\sin^{2}x & 1+\cos^{2}x & \sin 2x\\
\sin^{2}x & \cos^{2}x & 1+\sin 2x
\end{vmatrix},\ x\in\left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right].$ If $\alpha$ and $\beta$ respectively are the maximum and the minimum values of $f$, then
If $A,B$ and $\big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\big)$ are non-singular matrices of the same order, then the inverse of
$A\Big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\Big)^{-1}B$
is equal to:
Let $a_1,a_2,\dots,a_{10}$ be in G.P. with $a_i>0$ for $i=1,2,\dots,10$ and $S$ be the set of pairs $(r,k)$, $r,k\in\mathbb{N}$, for which
$
\begin{vmatrix}
\log_e(a_1^{\,r}a_2^{\,k}) & \log_e(a_2^{\,r}a_3^{\,k}) & \log_e(a_3^{\,r}a_4^{\,k})\\
\log_e(a_4^{\,r}a_5^{\,k}) & \log_e(a_5^{\,r}a_6^{\,k}) & \log_e(a_6^{\,r}a_7^{\,k})\\
\log_e(a_7^{\,r}a_8^{\,k}) & \log_e(a_8^{\,r}a_9^{\,k}) & \log_e(a_9^{\,r}a_{10}^{\,k})
\end{vmatrix}
=0.
$
Then the number of elements in $S$, is –
Let $A$ and $B$ be two square matrices of order $3$ such that $|A|=3$ and $|B|=2$. Then
$\left|,A^{T}A,( \operatorname{adj}(2A))^{-1},(\operatorname{adj}(4B)),(\operatorname{adj}(AB))^{-1},A A^{T}\right|$ is equal to:
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.
If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :
The values of $\alpha$ for which
$\begin{vmatrix}
1 & \dfrac{3}{2} & \alpha+\dfrac{3}{2}\\[4pt]
1 & \dfrac{1}{3} & \alpha+\dfrac{1}{3}\\[4pt]
2\alpha+3 & 3\alpha+1 & 0
\end{vmatrix}=0$
lie in the interval:
Let $A = \left( {\matrix{ {[x + 1]} & {[x + 2]} & {[x + 3]} \cr {[x]} & {[x + 3]} & {[x + 3]} \cr {[x]} & {[x + 2]} & {[x + 4]} \cr } } \right)$, where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval :
The set $S$ is all values of $\theta\in[-\pi,\pi]$ for which the system
$x+y+\sqrt{3},z=0,\quad -x+(\tan\theta),y+\sqrt{7},z=0,\quad x+y+(\tan\theta),z=0$
has a non-trivial solution. Then $\dfrac{120}{\pi}\displaystyle\sum_{\theta\in S}\theta$ is equal to:
Let
$A=\begin{bmatrix}
1&0&0\\
0&\alpha&\beta\\
0&\beta&\alpha
\end{bmatrix}$
and $\;|2A|^{3}=2^{21}$ where $\alpha,\beta\in\mathbb{Z}$. Then a value of $\alpha$ is:
For $\alpha, \beta \in \mathbb{R}$ and a natural number $n$, let $A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$ is
Let $S$ be the set of all $\lambda \in \mathbb{R}$ for which the system of linear equations
\[
2x - y + 2z = 2
\]
\[
x - 2y + \lambda z = -4
\]
\[
x + \lambda y + z = 4
\]
has no solution. Then the set $S$ :
Let $\omega$ be a complex number such that $2\omega + 1 = z$ where $z = \sqrt{-3}$.
If
$\begin{vmatrix}
1 & 1 & 1 \\
1 & -\omega^{2}-1 & \omega^{2} \\
1 & \omega^{2} & \omega^{7}
\end{vmatrix}
= 3k$,
then $k$ is equal to :
Let the numbers $2, b, c$ be in an A.P. and
$
A =
\begin{bmatrix}
1 & 1 & 1 \\
2 & b & c \\
4 & b^2 & c^2
\end{bmatrix}.
$
If $\det(A) \in [2, 16]$, then $c$ lies in the interval:
If x, y, z are in arithmetic progression with common difference d, x $\ne$ 3d, and the determinant of the matrix $\left[ {\matrix{ 3 & {4\sqrt 2 } & x \cr 4 & {5\sqrt 2 } & y \cr 5 & k & z \cr } } \right]$ is zero, then the value of k2 is :
Let $\alpha, \beta, \gamma$ be the real roots of the equation $x^3 + ax^2 + bx + c = 0$, $(a, b, c \in \mathbb{R} \text{ and } a, b \ne 0)$. If the system of equations (in $u, v, w$) given by $\alpha u + \beta v + \gamma w = 0$, $\beta u + \gamma v + \alpha w = 0$, $\gamma u + \alpha v + \beta w = 0$ has non-trivial solution, then the value of $\dfrac{a^2}{b}$ is:
Let $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$. The sum of the prime factors of $\left|P^{-1} A P-2 I\right|$ is equal to
Let $a \in R$ and $A$ be a matrix of order $3 \times 3$ such that $\operatorname{det}(A)=-4$ and $A+I=\left[\begin{array}{lll}1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2\end{array}\right]$, where $I$ is the identity matrix of order $3 \times 3$. If $\operatorname{det}((a+1) \operatorname{adj}((a-1) A))$ is $2^{\mathrm{m}} 3^{\mathrm{n}}, \mathrm{m}$, $\mathrm{n} \in\{0,1,2, \ldots, 20\}$, then $\mathrm{m}+\mathrm{n}$ is equal to :
The number of distinct real roots of the equation
$ \begin{vmatrix}
\cos x & \sin x & \sin x \\
\sin x & \cos x & \sin x \\
\sin x & \sin x & \cos x
\end{vmatrix} = 0 $
in the interval $ \left[ -\frac{\pi}{4}, \frac{\pi}{4} \right] $ is:
If the system of equations $2x+3y-z=0,\ x+ky-2z=0$ and $2x-y+z=0$ has a non-trivial solution $(x,y,z)$, then $\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}+k$ is equal to:
Let $A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$ and $B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right],\,\alpha \in C$. Then the absolute value of the sum of all values of $\alpha$ for which det(AB) = 0 is :
Let $A$ be a matrix of order $3\times 3$ and $|A|=5$. If $\left|,2,\operatorname{adj}\left(3A,\operatorname{adj}(2A)\right)\right|=2^{\alpha}\cdot 3^{\beta}\cdot 5^{\gamma}$, $\alpha,\beta,\gamma\in\mathbb{N}$, then $\alpha+\beta+\gamma$ is equal to
The sum of the real roots of the equation
$\left| {\matrix{
x & { - 6} & { - 1} \cr
2 & { - 3x} & {x - 3} \cr
{ - 3} & {2x} & {x + 2} \cr
} } \right| = 0$, is equal to :
If a + x = b + y = c + z + 1, where a, b, c, x, y, z are non-zero distinct real numbers, then $\left| {\matrix{ x & {a + y} & {x + a} \cr y & {b + y} & {y + b} \cr z & {c + y} & {z + c} \cr } } \right|$ is equal to :
Let $d\in\mathbb{R}$, and
$A=\begin{bmatrix}
-2 & 4+d & \sin\theta-2\\
1 & \sin\theta+2 & d\\
5 & 2\sin\theta-d & -\sin\theta+2+2d
\end{bmatrix},\ \theta\in[0,2\pi].$
If the minimum value of $\det(A)$ is $8$, then a value of $d$ is: