Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

JEE MAIN Previous Year Questions (PYQs)

JEE MAIN Determinants PYQ


JEE MAIN PYQ
The number of values of $\theta \in (0, \pi)$ for which the system of linear equations  
$x + 3y + 7z = 0$  
$-x + 4y + 7z = 0$  
$(\sin 3\theta)x + (\cos 2\theta)y + 2z = 0$  
has a non-trivial solution, is -





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $f(x)=\begin{vmatrix} 1+\sin^{2}x & \cos^{2}x & \sin 2x\\ \sin^{2}x & 1+\cos^{2}x & \sin 2x\\ \sin^{2}x & \cos^{2}x & 1+\sin 2x \end{vmatrix},\ x\in\left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right].$ If $\alpha$ and $\beta$ respectively are the maximum and the minimum values of $f$, then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (1 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $A,B$ and $\big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\big)$ are non-singular matrices of the same order, then the inverse of $A\Big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\Big)^{-1}B$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A = \begin{bmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{bmatrix}$ where $b > 0$. Then the minimum value of $\dfrac{\det(A)}{b}$ is –





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $g$ is the inverse of a function $f$ and $f'(x)=\dfrac{1}{1+x^{5}}$, then $g'(x)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2014 (Offline) PYQ

Solution


JEE MAIN PYQ
Let $a_1,a_2,\dots,a_{10}$ be in G.P. with $a_i>0$ for $i=1,2,\dots,10$ and $S$ be the set of pairs $(r,k)$, $r,k\in\mathbb{N}$, for which $ \begin{vmatrix} \log_e(a_1^{\,r}a_2^{\,k}) & \log_e(a_2^{\,r}a_3^{\,k}) & \log_e(a_3^{\,r}a_4^{\,k})\\ \log_e(a_4^{\,r}a_5^{\,k}) & \log_e(a_5^{\,r}a_6^{\,k}) & \log_e(a_6^{\,r}a_7^{\,k})\\ \log_e(a_7^{\,r}a_8^{\,k}) & \log_e(a_8^{\,r}a_9^{\,k}) & \log_e(a_9^{\,r}a_{10}^{\,k}) \end{vmatrix} =0. $ Then the number of elements in $S$, is –





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $S$ be the set of all real values of $k$ for which the system of linear equations
$x + y + z = 2$
$2x + y - z = 3$
$3x + 2y + kz = 4$
has a unique solution. Then $S$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A$ and $B$ be two square matrices of order $3$ such that $|A|=3$ and $|B|=2$. Then $\left|,A^{T}A,( \operatorname{adj}(2A))^{-1},(\operatorname{adj}(4B)),(\operatorname{adj}(AB))^{-1},A A^{T}\right|$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the system $11x+y+\lambda z=-5,\quad 2x+3y+5z=3,\quad 8x-19y-39z=\mu$ has infinitely many solutions, then $\lambda^{4}-\mu$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The number of values of $\alpha$ for which the system of equations :

x + y + z = $\alpha$

$\alpha$x + 2$\alpha$y + 3z = $-$1

x + 3$\alpha$y + 5z = 4

is inconsistent, is






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (24 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
$ \text{Let } A = \begin{bmatrix} 2 & 1 & 0 \ 1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix}. \text{ If } \left| \operatorname{adj} \big( \operatorname{adj} (\operatorname{adj}(2A)) \big) \right| = (16)^n, \text{ then } n \text{ is equal to:} $





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The values of $m, n$, for which the system of equations

$\begin{aligned} & x+y+z=4, \\ & 2 x+5 y+5 z=17, \\ & x+2 y+\mathrm{m} z=\mathrm{n} \end{aligned}$

has infinitely many solutions, satisfy the equation :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If \[ \begin{vmatrix} a-b-c & 2a & 2a\\ 2b & b-c-a & 2b\\ 2c & 2c & c-a-b \end{vmatrix} =(a+b+c)\,(x+a+b+c)^{2},\ x\ne 0, \] then $x$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (11 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If the system of linear equations
$x + ky + 3z = 0$
$3x + ky - 2z = 0$
$2x + 4y - 3z = 0$
has a non-zero solution $(x, y, z)$, then $\dfrac{xz}{y^{2}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (Offline) PYQ

Solution


JEE MAIN PYQ
If $\left|\begin{bmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{bmatrix}\right| = (A+Bx)(x-A)^{2}$ then the ordered pair $(A,B)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (Offline) PYQ

Solution


JEE MAIN PYQ
The values of $\alpha$ for which $\begin{vmatrix} 1 & \dfrac{3}{2} & \alpha+\dfrac{3}{2}\\[4pt] 1 & \dfrac{1}{3} & \alpha+\dfrac{1}{3}\\[4pt] 2\alpha+3 & 3\alpha+1 & 0 \end{vmatrix}=0$ lie in the interval:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (27 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $A = \left( {\matrix{ {[x + 1]} & {[x + 2]} & {[x + 3]} \cr {[x]} & {[x + 3]} & {[x + 3]} \cr {[x]} & {[x + 2]} & {[x + 4]} \cr } } \right)$, where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
The set $S$ is all values of $\theta\in[-\pi,\pi]$ for which the system $x+y+\sqrt{3},z=0,\quad -x+(\tan\theta),y+\sqrt{7},z=0,\quad x+y+(\tan\theta),z=0$ has a non-trivial solution. Then $\dfrac{120}{\pi}\displaystyle\sum_{\theta\in S}\theta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
The value of $\left| {\matrix{ {(a + 1)(a + 2)} & {a + 2} & 1 \cr {(a + 2)(a + 3)} & {a + 3} & 1 \cr {(a + 3)(a + 4)} & {a + 4} & 1 \cr } } \right|$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A=\begin{bmatrix} 1&0&0\\ 0&\alpha&\beta\\ 0&\beta&\alpha \end{bmatrix}$ and $\;|2A|^{3}=2^{21}$ where $\alpha,\beta\in\mathbb{Z}$. Then a value of $\alpha$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
For $\alpha, \beta \in \mathbb{R}$ and a natural number $n$, let $A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (6 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $S$ be the set of all $\lambda \in \mathbb{R}$ for which the system of linear equations \[ 2x - y + 2z = 2 \] \[ x - 2y + \lambda z = -4 \] \[ x + \lambda y + z = 4 \] has no solution. Then the set $S$ :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
If   A = $\left[ {\matrix{ 1 & {\sin \theta } & 1 \cr { - \sin \theta } & 1 & {\sin \theta } \cr { - 1} & { - \sin \theta } & 1 \cr } } \right]$;

then for all $\theta $ $ \in $ $\left( {{{3\pi } \over 4},{{5\pi } \over 4}} \right)$, det (A) lies in the interval :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $S$ is the set of distinct values of $b$ for which the following system of linear equations

$x + y + z = 1$

$x + ay + z = 1$

$ax + by + z = 0$
has no solution, then $S$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (Offline) PYQ

Solution


JEE MAIN PYQ
Let $\omega$ be a complex number such that $2\omega + 1 = z$ where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7} \end{vmatrix} = 3k$, then $k$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (Offline) PYQ

Solution


JEE MAIN PYQ
If \[ f(x)= \begin{vmatrix} 2\cos^{4}x & 2\sin^{4}x & 3+\sin^{2}2x\\ 3+2\cos^{4}x & 2\sin^{4}x & \sin^{2}2x\\ 2\cos^{4}x & 3+2\sin^{4}x & \sin^{2}2x \end{vmatrix}, \] then $\dfrac{1}{5}\,f'(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (30 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The greatest value of $c\in\mathbb{R}$ for which the system of linear equations
$x-cy-cz=0$
$cx-y+cz=0$
$cx+cy-z=0$
has a non-trivial solution, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
$\text { Let } A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{array}\right] \text { and }|2 \mathrm{~A}|^3=2^{21} \text { where } \alpha, \beta \in Z \text {, Then a value of } \alpha \text { is }$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let the numbers $2, b, c$ be in an A.P. and $ A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & b & c \\ 4 & b^2 & c^2 \end{bmatrix}. $ If $\det(A) \in [2, 16]$, then $c$ lies in the interval:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\Delta $ = $\left| {\matrix{ {x - 2} & {2x - 3} & {3x - 4} \cr {2x - 3} & {3x - 4} & {4x - 5} \cr {3x - 5} & {5x - 8} & {10x - 17} \cr } } \right|$ = Ax3 + Bx2 + Cx + D, then B + C is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 3 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
If

$S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\matrix{ 0 & {\cos x} & { - \sin x} \cr {\sin x} & 0 & {\cos x} \cr {\cos x} & {\sin x} & 0 \cr } } \right| = 0} \right\},$

then $\sum\limits_{x \in S} {\tan \left( {{\pi \over 3} + x} \right)} $ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$ and $\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$, then $\frac{\mathrm{a}}{\alpha-\mathrm{a}}+\frac{\mathrm{b}}{\beta-\mathrm{b}}+\frac{\gamma}{\gamma-\mathrm{c}}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
The system of equations kx + y + z = 1, x + ky + z = k and x + y + zk = k2 has no solution if k is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
If x, y, z are in arithmetic progression with common difference d, x $\ne$ 3d, and the determinant of the matrix $\left[ {\matrix{ 3 & {4\sqrt 2 } & x \cr 4 & {5\sqrt 2 } & y \cr 5 & k & z \cr } } \right]$ is zero, then the value of k2 is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
The solutions of the equation $\left| {\matrix{ {1 + {{\sin }^2}x} & {{{\sin }^2}x} & {{{\sin }^2}x} \cr {{{\cos }^2}x} & {1 + {{\cos }^2}x} & {{{\cos }^2}x} \cr {4\sin 2x} & {4\sin 2x} & {1 + 4\sin 2x} \cr } } \right| = 0,(0 < x < \pi )$, are




Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (18 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $\alpha, \beta, \gamma$ be the real roots of the equation $x^3 + ax^2 + bx + c = 0$, $(a, b, c \in \mathbb{R} \text{ and } a, b \ne 0)$. If the system of equations (in $u, v, w$) given by $\alpha u + \beta v + \gamma w = 0$, $\beta u + \gamma v + \alpha w = 0$, $\gamma u + \alpha v + \beta w = 0$ has non-trivial solution, then the value of $\dfrac{a^2}{b}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (18 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$. The sum of the prime factors of $\left|P^{-1} A P-2 I\right|$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $a \in R$ and $A$ be a matrix of order $3 \times 3$ such that $\operatorname{det}(A)=-4$ and $A+I=\left[\begin{array}{lll}1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2\end{array}\right]$, where $I$ is the identity matrix of order $3 \times 3$. If $\operatorname{det}((a+1) \operatorname{adj}((a-1) A))$ is $2^{\mathrm{m}} 3^{\mathrm{n}}, \mathrm{m}$, $\mathrm{n} \in\{0,1,2, \ldots, 20\}$, then $\mathrm{m}+\mathrm{n}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $\alpha $ and $\beta $ be the roots of the equation x2 + x + 1 = 0. Then for y $ \ne $ 0 in R,
$\left| {\matrix{ {y + 1} & \alpha & \beta \cr \alpha & {y + \beta } & 1 \cr \beta & 1 & {y + \alpha } \cr } } \right|$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $f(x)= \begin{vmatrix} x^{3} & 2x^{2}+1 & 1+3x\\ 3x^{2}+2 & 2x & x^{3}+6\\ x^{3}-x & 4 & x^{2}-2 \end{vmatrix} \ \text{for all } x\in\mathbb{R},\ \text{then } 2f(0)+f'(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (31 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the system of equations

$ \begin{aligned} & 2 x+\lambda y+3 z=5 \\ & 3 x+2 y-z=7 \\ & 4 x+5 y+\mu z=9 \end{aligned} $

has infinitely many solutions, then $\left(\lambda^2+\mu^2\right)$ is equal to :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
The number of distinct real roots of the equation $ \begin{vmatrix} \cos x & \sin x & \sin x \\ \sin x & \cos x & \sin x \\ \sin x & \sin x & \cos x \end{vmatrix} = 0 $ in the interval $ \left[ -\frac{\pi}{4}, \frac{\pi}{4} \right] $ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the system of equations $2x+3y-z=0,\ x+ky-2z=0$ and $2x-y+z=0$ has a non-trivial solution $(x,y,z)$, then $\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}+k$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If ${\Delta _1} = \left| {\matrix{ x & {\sin \theta } & {\cos \theta } \cr { - \sin \theta } & { - x} & 1 \cr {\cos \theta } & 1 & x \cr } } \right|$ and
${\Delta _2} = \left| {\matrix{ x & {\sin 2\theta } & {\cos 2\theta } \cr { - \sin 2\theta } & { - x} & 1 \cr {\cos 2\theta } & 1 & x \cr } } \right|$, $x \ne 0$ ;

then for all $\theta \in \left( {0,{\pi \over 2}} \right)$ :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$ and $B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right],\,\alpha \in C$. Then the absolute value of the sum of all values of $\alpha$ for which det(AB) = 0 is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (30 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A$ be a matrix of order $3\times 3$ and $|A|=5$. If $\left|,2,\operatorname{adj}\left(3A,\operatorname{adj}(2A)\right)\right|=2^{\alpha}\cdot 3^{\beta}\cdot 5^{\gamma}$, $\alpha,\beta,\gamma\in\mathbb{N}$, then $\alpha+\beta+\gamma$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the minimum and the maximum values of the function $f:\left[ {{\pi \over 4},{\pi \over 2}} \right] \to R$, defined by$f\left( \theta \right) = \left| {\matrix{ { - {{\sin }^2}\theta } & { - 1 - {{\sin }^2}\theta } & 1 \cr { - {{\cos }^2}\theta } & { - 1 - {{\cos }^2}\theta } & 1 \cr {12} & {10} & { - 2} \cr } } \right|$ are m and M respectively, then the ordered pair (m,M) isequal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
The sum of the real roots of the equation
$\left| {\matrix{ x & { - 6} & { - 1} \cr 2 & { - 3x} & {x - 3} \cr { - 3} & {2x} & {x + 2} \cr } } \right| = 0$, is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If a + x = b + y = c + z + 1, where a, b, c, x, y, z are non-zero distinct real numbers, then
$\left| {\matrix{ x & {a + y} & {x + a} \cr y & {b + y} & {y + b} \cr z & {c + y} & {z + c} \cr } } \right|$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
Let $d\in\mathbb{R}$, and $A=\begin{bmatrix} -2 & 4+d & \sin\theta-2\\ 1 & \sin\theta+2 & d\\ 5 & 2\sin\theta-d & -\sin\theta+2+2d \end{bmatrix},\ \theta\in[0,2\pi].$ If the minimum value of $\det(A)$ is $8$, then a value of $d$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The set of all values of $\lambda$ for which the system of linear equations  
$2x_{1}-2x_{2}+x_{3}=\lambda x_{1}$  
$2x_{1}-3x_{2}+2x_{3}=\lambda x_{2}$  
$-x_{1}+2x_{2}=\lambda x_{3}$  
has a non-trivial solution  





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2015 (Offline) PYQ

Solution



JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...