Let $f:\mathbb{R}\to\mathbb{R}$ be a function given by
$
f(x)=
\begin{cases}
\dfrac{1-\cos 2x}{x^2}, & x<0,\\[6pt]
\alpha, & x=0,\\[6pt]
\dfrac{\beta\sqrt{\,1-\cos x\,}}{x}, & x>0,
\end{cases}
$
where $\alpha,\beta\in\mathbb{R}$. If $f$ is continuous at $x=0$, then $\alpha^2+\beta^2$ is equal to:
If the function
$
f(x)=
\begin{cases}
\dfrac{7^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos^{2}x}}, & x\neq0,\\[6pt]
a\log_{e}2\log_{e}3, & x=0
\end{cases}
$
is continuous at $x=0$, then the value of $a^{2}$ is equal to:
Let $f:\left( { - {\pi \over 4},{\pi \over 4}} \right) \to R$ be defined as $f(x) = \left\{ {\matrix{ {{{(1 + |\sin x|)}^{{{3a} \over {|\sin x|}}}}} & , & { - {\pi \over 4} < x < 0} \cr b & , & {x = 0} \cr {{e^{\cot 4x/\cot 2x}}} & , & {0 < x < {\pi \over 4}} \cr } } \right.$ If f is continuous at x = 0, then the value of 6a + b2 is equal to :
Consider the function
$
f(x)=
\begin{cases}
\dfrac{a\,(7x-12-x^{2})}{\,b\,\lfloor x^{2}-7x+12\rfloor\,}, & x<3,\\[6pt]
\dfrac{\sin(x-3)}{2^{\,x-1}}, & x>3,\\[6pt]
b, & x=3,
\end{cases}
$
where $\lfloor x\rfloor$ denotes the greatest integer $\le x$.
If $S$ denotes the set of all ordered pairs $(a,b)$ such that $f(x)$ is continuous at $x=3$, then the number of elements in $S$ is:
Let $f:[-1,2]\to\mathbb{R}$ be given by $f(x)=2x^{2}+x+\lfloor x^{2}\rfloor-\lfloor x\rfloor$, where $\lfloor t\rfloor$ denotes the greatest integer $\le t$. The number of points where $f$ is not continuous is:
The function $f : \mathbb{R} \to \mathbb{R}$ defined by
$$
f(x) = \lim_{n \to \infty} \frac{\cos(2 \pi x) - x^{2n} \sin(x-1)}{1 + x^{2n+1} - x^{2n}}
$$
is continuous for all $x$ in :
Let $[x]$ denote the greatest integer function, and let $m$ and $n$ respectively be the numbers of the points where the function $f(x) = [x] + |x - 2|$, $-2 < x < 3$, is not continuous and not differentiable. Then $m + n$ is equal to:
If the function $f$ defined as
$f(x) = \dfrac{1}{x} - \dfrac{kx - 1}{e^{2x} - 1}, ; x \ne 0$,
is continuous at $x = 0$, then the ordered pair $(k, f(0))$ is equal to :
Let the function
$
f(x) =
\begin{cases}
\dfrac{\log_e(1+5x) - \log_e(1+\alpha x)}{x}, & x \neq 0 \\
10, & x = 0
\end{cases}
$
be continuous at $x=0$.
Then $\alpha$ is equal to:
If the function $f$ defined as $f(x)=\dfrac{1}{x}-\dfrac{kx-1}{e^{2x}-1},\ x\ne0$, is continuous at $x=0$, then the ordered pair $(k,f(0))$ is equal to :
Let f : R $ \to $ R be defined as $f(x) = \left\{ \matrix{ 2\sin \left( { - {{\pi x} \over 2}} \right),if\,x < - 1 \hfill \cr |a{x^2} + x + b|,\,if - 1 \le x \le 1 \hfill \cr \sin (\pi x),\,if\,x > 1 \hfill \cr} \right.$ If f(x) is continuous on R, then a + b equals :
If a function $f(x)$ defined by $f(x) =
\begin{cases}
ae^x + be^{-x}, & -1 \leq x < 1 \\[6pt] cx^2, & 1 \leq x \leq 3 \\[6pt]
ax^2 + 2cx, & 3 < x \leq 4
\end{cases}
\\[10pt] $ be continuous for some $ a, b, c \in \mathbb{R} $ and $f'(0) + f'(2) = e,$ then the value of $a$ is
Let $\alpha$ $\in$ R be such that the function $f(x) = \left\{ {\matrix{ {{{{{\cos }^{ - 1}}(1 - {{\{ x\} }^2}){{\sin }^{ - 1}}(1 - \{ x\} )} \over {\{ x\} - {{\{ x\} }^3}}},} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ is continuous at x = 0, where {x} = x $-$ [ x ] is the greatest integer less than or equal to x. Then :
$\mathrm{a}, \mathrm{b}>0$, let $f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, & x< 0 \\ 3, & x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, & x> 0\end{cases}$
be a continuous function at $x=0$. Then $\frac{\mathrm{b}}{\mathrm{a}}$ is equal to :
If the function $f$ defined on $\left(\dfrac{\pi}{6}, \dfrac{\pi}{3}\right)$ by
$f(x) =
\begin{cases}
\dfrac{\sqrt{2}\cos x - 1}{\cot x - 1}, & x \ne \dfrac{\pi}{4} \
k, & x = \dfrac{\pi}{4}
\end{cases}$
is continuous, then $k$ is equal to
A ray of light coming from the point $P(1,2)$ gets reflected from the point $Q$ on the $x$-axis and then passes through the point $R(4,3)$. If the point $S(h,k)$ is such that $PQRS$ is a parallelogram, then $hk^{2}$ is equal to:
Let \; f:\mathbb{R}\to\mathbb{R} \text{ be defined as}
\[
f(x) =
\begin{cases}
\dfrac{\sin\!\big((a+1)x\big)+\sin 2x}{2x}, & x<0 \\[8pt]
b, & x=0 \\[8pt]
\dfrac{\sqrt{x+bx^{3}}-\sqrt{x}}{b\,x^{5/2}}, & x>0
\end{cases}
\]
If f is continuous at x = 0, then the value of a + b is equal to :
Let a function f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {\sin x - {e^x}} & {if} & {x \le 0} \cr {a + [ - x]} & {if} & {0 < x < 1} \cr {2x - b} & {if} & {x \ge 1} \cr } } \right.$ where [ x ] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:
Let f : R $ \to $ R be a function defined as
$f(x) = \left\{ {\matrix{
5 & ; & {x \le 1} \cr
{a + bx} & ; & {1 < x < 3} \cr
{b + 5x} & ; & {3 \le x < 5} \cr
{30} & ; & {x \ge 5} \cr
} } \right.$
Then, f is
Let $\quad f(x)= \begin{cases}(1+a x)^{1 / x} & , x<0 \\ 1+b, & x=0 \\ \frac{(x+4)^{1 / 2}-2}{(x+c)^{1 / 3}-2}, & x>0\end{cases}$ be continuous at $x=0$. Then $e^a b c$ is equal to:
Let $f:\mathbf{R}\rightarrow\mathbf{R}$ be defined as
$
f(x)=
\begin{cases}
\dfrac{a - b\cos 2x}{x^2}, & x < 0, \\[6pt]
x^2 + cx + 2, & 0 \le x \le 1, \\[6pt]
2x + 1, & x > 1.
\end{cases}
$
If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is **not differentiable**,
then $m + a + b + c$ equals :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{{x^3}} \over {{{(1 - \cos 2x)}^2}}}{{\log }_e}\left( {{{1 + 2x{e^{ - 2x}}} \over {{{(1 - x{e^{ - x}})}^2}}}} \right),} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ If f is continuous at x = 0, then $\alpha$ is equal to :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$ where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $\lambda$ + $\mu$ is equal to :
Let $a,b\in\mathbb{R}$, $(a\neq 0)$. If the function $f$ defined as
$f(x)=
\begin{cases}
\dfrac{2x^{2}}{a}, & 0\le x<1 \\
a, & 1\le x<\sqrt{2} \\
\dfrac{2b^{2}-4b}{x^{3}}, & \sqrt{2}\le x<\infty
\end{cases}$
is continuous in the interval $[0,\infty)$, then an ordered pair $(a,b)$ is :
If the function $f(x) =
\begin{cases}
\dfrac{\log_e(1 - x + x^{2}) + \log_e(1 + x + x^{2})}{\sec x - \cos x}, & x \in \left( -\tfrac{\pi}{2}, \tfrac{\pi}{2} \right) \setminus \{0\} \\
k, & x = 0
\end{cases}$
is continuous at $x=0$, then $k$ is equal to: