Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

JEE MAIN Previous Year Questions (PYQs)

JEE MAIN Complex Number PYQ


JEE MAIN PYQ
The region represented by {z = x + iy $ \in $ C : |z| – Re(z) $ \le $ 1} is also given by the inequality :{z = x + iy $ \in $ C : |z| – Re(z) $ \le $ 1}





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 6 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\overline{z})^2 + |z| = 0,\; z \in \mathbb{C}$. Then $4(\alpha^2 + \beta^2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $z = \left(\dfrac{\sqrt{3}}{2} + \dfrac{i}{2}\right)^5 + \left(\dfrac{\sqrt{3}}{2} - \dfrac{i}{2}\right)^5.$ If $R(z)$ and $I(z)$ respectively denote the real and imaginary parts of $z$, then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $z = x+iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5i|=0$, then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
The number of complex numbers $z$ satisfying $|z|=1$ and $\left|\dfrac{z}{\overline{z}}+\dfrac{\overline{z}}{z}\right|=1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let C be the set of all complex numbers. Let ${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $ ${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $ and ${S_3} = \{ z \in C||z - \overline z | \ge 8\} $. Then the number of elements in ${S_1} \cap {S_2} \cap {S_3}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let z $ \in $ C with Im(z) = 10 and it satisfies ${{2z - n} \over {2z + n}}$ = 2i - 1 for some natural number n. Then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let the product of $\omega_1=(8+i)\sin\theta+(7+4i)\cos\theta$ and $\omega_2=(1+8i)\sin\theta+(4+7i)\cos\theta$ be $\alpha+i\beta$, where $i=\sqrt{-1}$. Let $p$ and $q$ be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $p+q$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $a,b$ be two real numbers such that $ab<0$. If the complex number $\dfrac{1+ai}{\,b+i\,}$ is of unit modulus and $a+ib$ lies on the circle $|z-1|=|2z|$, then a possible value of $\dfrac{1+[a]}{4b}$, where $[\,\cdot\,]$ is the greatest integer function, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (1 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $z$ is a complex number such that $|z|\ge 2$, then the minimum value of $\left|z+\dfrac{1}{2}\right|$ :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2014 (Offline) PYQ

Solution


JEE MAIN PYQ
Let z = x + iy be a non-zero complex numbersuch that ${z^2} = i{\left| z \right|^2}$, where i = $\sqrt { - 1} $ , then z lieson the :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 6 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
The area (in sq. units) of the region $S = \{\, z \in \mathbb{C} : |z - 1| \le 2,\ (z + \bar{z}) + i(z - \bar{z}) \le 2,\ \operatorname{Im}(z) \ge 0 \,\}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
$ \text{Let } f,g : \mathbb{N} - \{1\} \to \mathbb{N} \text{ be functions defined by } f(a) = \alpha, \text{ where } \alpha \text{ is the maximum of the powers of those primes } p \text{ such that } p^\alpha \text{ divides } a, \text{ and } g(a) = a+1, \text{ for all } a \in \mathbb{N} - \{1\}. \text{ Then, the function } f+g \text{ is} $





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (27 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
Consider the following two statements: Statement I: For any two non-zero complex numbers $z_1,z_2$, $(|z_1|+|z_2|)\left|\dfrac{z_1}{|z_1|}+\dfrac{z_2}{|z_2|}\right|\le 2(|z_1|+|z_2|)$. Statement II: If $x,y,z$ are three distinct complex numbers and $a,b,c$ are positive real numbers such that $\dfrac{a}{|,y-z,|}=\dfrac{b}{|,z-x,|}=\dfrac{c}{|,x-y,|}$, then $\dfrac{a^{2}}{,y-z,}+\dfrac{b^{2}}{,z-x,}+\dfrac{c^{2}}{,x-y,}=1$. Between the above two statements:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The set of all $\alpha \in \mathbb{R}$ for which $w = \dfrac{1 + (1-8\alpha)z}{1-z}$ is purely imaginary number, for all $z \in \mathbb{C}$ satisfying $|z| = 1$ and $\operatorname{Re} z \ne 1$, is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $S = \{ z \in \mathbb{C} : |z - i| = |z + i| = |z - 1| \}$, then $n(S)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (27 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Among the statements (S1): The set ${z\in\mathbb{C}\setminus{-i}:\ |z|=1\ \text{ and }\ \dfrac{z-i}{z+i}\ \text{is purely real}}$ contains exactly two elements and (S2): The set ${z\in\mathbb{C}\setminus{-1}:\ |z|=1\ \text{ and }\ \dfrac{z-1}{z+1}\ \text{is purely imaginary}}$ contains infinitely many elements.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A = \{ z \in C:1 \le |z - (1 + i)| \le 2\} $

and $B = \{ z \in A:|z - (1 - i)| = 1\} $. Then, B :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (24 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z$ is a complex number of unit modulus and argument $\theta$, then $\arg\left(\frac{1+z}{1+z^2}\right)$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2013 (Offline) PYQ

Solution


JEE MAIN PYQ
If $\alpha$ and $\beta$ are the roots of the equation $2x^2 - 3x - 2i = 0$, where $i = \sqrt{-1}$, then $16 \cdot \text{Re}\left( \dfrac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^5 + \beta^5} \right) \cdot \text{Im}\left( \dfrac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^5 + \beta^5} \right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $a\ne b$ be two non-zero real numbers. Then the number of elements in the set $X=\{\, z\in\mathbb{C} : \operatorname{Re}(a z^{2}+bz)=a \text{ and } \operatorname{Re}(b z^{2}+a z)=b \,\}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (6 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Among the statements: (S1): $2023^{2022}-1999^{2022}$ is divisible by $8$. (S2): $13(13)^n-12n-13$ is divisible by $144$ for infinitely many $n\in\mathbb{N}$.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (6 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $\left(-2-\dfrac{1}{3}i\right)^{3}=e^{\frac{x+iy}{2\pi i}}\ (i=\sqrt{-1})$, where $x$ and $y$ are real numbers, then $\,y-x\,$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (11 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The equation $\arg \left( {{{z - 1} \over {z + 1}}} \right) = {\pi \over 4}$ represents a circle with :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $|z - 3 + 2i| \le 4$ then the difference between the greatest value and the least value of $|z|$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (15 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If the locus of $z\in\mathbb{C}$, such that $\operatorname{Re}!\left(\dfrac{z-1}{2z+i}\right)+\operatorname{Re}!\left(\dfrac{z-1}{2z-i}\right)=2$, is a circle of radius $r$ and center $(a,b)$, then $\dfrac{15ab}{r^2}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $S_1=\{z \in \mathbf{C}:|z| \leq 5\}, S_2=\left\{z \in \mathbf{C}: \operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$ and $S_3=\{z \in \mathbf{C}: \operatorname{Re}(z) \geq 0\}$. Then the area of the region $S_1 \cap S_2 \cap S_3$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (5 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $S_{1} = \{ z_{1} \in \mathbb{C} : |z_{1} - 3| = \tfrac{1}{2} \}$ and $S_{2} = \{ z_{2} \in \mathbb{C} : |z_{2} - |z_{2} + 1|| = |z_{2} + |z_{2} - 1|| \}$. Then, for $z_{1} \in S_{1}$ and $z_{2} \in S_{2}$, the least value of $|z_{2} - z_{1}|$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (28 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $z$ be a complex number such that $|z|+z=3+i$ (where $i=\sqrt{-1}$). Then $|z|$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (11 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If ${\left( {\sqrt 3 + i} \right)^{100}} = {2^{99}}(p + iq)$, then p and q are roots of the equation :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (26 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha$, $\beta$ $\in$ R are such that 1 $-$ 2i (here i2 = $-$1) is a root of z2 + $\alpha$z + $\beta$ = 0, then ($\alpha$ $-$ $\beta$) is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (25 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $A=\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1-i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $\mathrm{A}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
$S = { z \in \mathbb{C} : \dfrac{z - i}{z + 2i} \in \mathbb R }$, then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (27 August Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha, \beta \in \mathbb{C}$ are the distinct roots of the equation $x^{2} - x + 1 = 0$, then $\alpha^{101} + \beta^{107}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (Offline) PYQ

Solution


JEE MAIN PYQ
If $\displaystyle \frac{z-\alpha}{z+\alpha}\ (\alpha\in\mathbb{R})$ is a purely imaginary number and $|z|=2$, then a value of $\alpha$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z = 2 + 3i$, then $z^5 + (\bar{z})^5$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let a circle C in complex plane pass through the points ${z_1} = 3 + 4i$, ${z_2} = 4 + 3i$ and ${z_3} = 5i$. If $z( \ne {z_1})$ is a point on C such that the line through z and z1 is perpendicular to the line through z2 and z3, then $arg(z)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let z1 and z2 be two complex numbers such that ${\overline z _1} = i{\overline z _2}$ and $\arg \left( {{{{z_1}} \over {{{\overline z }_2}}}} \right) = \pi $. Then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $z=\dfrac{1}{2}-2i$ is such that $|z+1|=\alpha z+\beta(1+i)$, $i=\sqrt{-1}$ and $\alpha,\beta\in\mathbb{R}$, then $\alpha+\beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $O$ be the origin, the point $A$ be $z_1=\sqrt{3}+2\sqrt{2},i$, the point $B$ $(z_2)$ be such that $\sqrt{3},|z_2|=|z_1|$ and $\arg(z_2)=\arg(z_1)+\dfrac{\pi}{6}$. Then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z \neq 0$ be a complex number such that $\left|z - \frac{1}{z}\right| = 2$, then the maximum value of $|z|$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
The complex number $z=x+iy$ is such that $\dfrac{2z-3i}{2z+i}$ is purely imaginary. If $x+y^{2}=0$, then $y^{4}+y^{2}-y$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (10 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The set $S = \{ z = x + i y : \dfrac{2z - 3i}{4z + 2i} \text{ is a real number} \}$ is given. Then which of the following is **NOT correct**?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (10 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $A = \left\{ {z \in C:\left| {{{z + 1} \over {z - 1}}} \right| < 1} \right\}$ and $B = \left\{ {z \in C:\arg \left( {{{z - 1} \over {z + 1}}} \right) = {{2\pi } \over 3}} \right\}$. Then A $\cap$ B is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z_1, z_2$ are two distinct complex number such that $\left|\frac{z_1-2 z_2}{\frac{1}{2}-z_1 \bar{z}_2}\right|=2$, then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (6 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
The least positive integer $n$ for which $\left(\dfrac{1 + i\sqrt{3}}{1 - i\sqrt{3}}\right)^{n} = 1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2018 (16 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $S=\{\,z=x+iy:\ |z-1+i|\ge |z|,\ |z|<2,\ |z+i|=|z-1|\,\}$. Then the set of all values of $x$, for which $w=2x+iy\in S$ for some $y\in\mathbb{R}$, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z_1$ and $z_2$ be two complex numbers satisfying $|z_1|=9$ and $|z_2-3-4i|=4$. Then the minimum value of $|z_1-z_2|$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let a complex number z, |z| $\ne$ 1, satisfy ${\log _{{1 \over {\sqrt 2 }}}}\left( {{{|z| + 11} \over {{{(|z| - 1)}^2}}}} \right) \le 2$. Then, the largest value of |z| is equal to ____________.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (16 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of $x^2 - (3 - 2i)x - (2i - 2) = 0$, $i = \sqrt{-1}$, then $\alpha \gamma + \beta \delta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
$\left( \dfrac{1 + \sin\frac{2\pi}{9} + i \cos\frac{2\pi}{9}}{1 + \sin\frac{2\pi}{9} - i \cos\frac{2\pi}{9}} \right)^3$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
Let $p, q \in \mathbb{R}$ and $(1 - \sqrt{3}i)^{200} = 2^{199}(p + iq),\ i = \sqrt{-1}$ Then $p + q + q^2$ and $p - q + q^2$ are roots of the equation.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $w_1$ be the point obtained by the rotation of $z_1 = 5 + 4i$ about the origin through a right angle in the anticlockwise direction, and $w_2$ be the point obtained by the rotation of $z_2 = 3 + 5i$ about the origin through a right angle in the clockwise direction. Then the principal argument of $w_1 - w_2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (11 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $r$ and $\theta$ respectively be the modulus and amplitude of the complex number $z=2-i\!\left(2\tan\frac{5\pi}{8}\right)$. Then $(r,\theta)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $A = {\theta \in [0,2\pi] : 1 + 10,\mathrm{Re}\left(\dfrac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = 0}$. Then $\displaystyle \sum_{\theta \in A} \theta^2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
The area of the polygon, whose vertices are the non-real roots of the equation $\overline z = i{z^2}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
For $a \in \mathbb{C}$, let $A = \{\, z \in \mathbb{C} : \Re(a + \bar z) > \Im(\bar a + z) \,\}$ and $B = \{\, z \in \mathbb{C} : \Re(a + \bar z) < \Im(\bar a + z) \,\}$. Then among the two statements: (S1): If $\Re(a), \Im(a) > 0$, then the set $A$ contains all the real numbers. (S2): If $\Re(a), \Im(a) < 0$, then the set $B$ contains all the real numbers.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (11 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $\alpha$ and $\beta$ be the roots of the equation $x^2-2x+2=0$, then the least value of $n$ for which $\left(\dfrac{\alpha}{\beta}\right)^n=1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The least value of |z| where z is complex number which satisfies the inequality $\exp \left( {{{(|z| + 3)(|z| - 1)} \over {||z| + 1|}}{{\log }_e}2} \right) \ge {\log _{\sqrt 2 }}|5\sqrt 7 + 9i|,i = \sqrt { - 1} $, is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (16 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z$ be a complex number such that $\lvert z+2\rvert=1$ and $\operatorname{Im}!\left(\dfrac{z+1}{z+2}\right)=\dfrac{1}{5}$. Then the value of $\lvert \operatorname{Re}(z+2)\rvert$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The imaginary part of
$${\left( {3 + 2\sqrt { - 54} } \right)^{{1 \over 2}}} - {\left( {3 - 2\sqrt { - 54} } \right)^{{1 \over 2}}}$$ can be





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
If $z=x+iy$ with $xy\ne0$ satisfies $z^{2}+i\overline{z}=0$, then $|z^{2}|$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (30 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of $\left(\dfrac{\,1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}\,}{\,1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}\,}\right)^{3}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
If the set $R=\{(a, b): a+5 b=42, a, b \in \mathbb{N}\}$ has $m$ elements and $\sum_\limits{n=1}^m\left(1-i^{n !}\right)=x+i y$, where $i=\sqrt{-1}$, then the value of $m+x+y$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $z\in\mathbb{C}$, the set of complex numbers. Then the equation $2|z+3i|-|z-i|=0$ represents :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (8 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z=\dfrac{\sqrt{3}}{2}+\dfrac{i}{2}\ \ (i=\sqrt{-1})$, then $\left(1+iz+z^{5}+iz^{8}\right)^{9}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
The number of points of intersection of $|z - (4 + 3i)| = 2$ and $|z| + |z - 4| = 6$, z $\in$ C, is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (27 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $z = \dfrac{1}{2} - 2i$ is such that $|z + 1| = \alpha z + \beta (1 + i)$, $i = \sqrt{-1}$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha + \beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z$ is a complex number, then the number of common roots of $z^{1985}+z^{100}+1=0$ and $z^{3}+2z^{2}+2z+1=0$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (30 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $C$ be the circle in the complex plane with centre $z_0=\tfrac{1}{2}(1+3i)$ and radius $r=1$. Let $z_1=1+i$ and the complex number $z_2$ be outside the circle $C$ such that $\lvert z_1-z_0\rvert\,\lvert z_2-z_0\rvert=1$. If $z_0,z_1$ and $z_2$ are collinear, then the smaller value of $\lvert z_2\rvert^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (12 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $z_{1}=2+3i$ and $z_{2}=3+4i$. The set $S=\left\{\,z\in\mathbb{C}:\ |z-z_{1}|^{2}-|z-z_{2}|^{2}=|z_{1}-z_{2}|^{2}\,\right\}$ represents a





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (25 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The area of the triangle with vertices A(z), B(iz) and C(z + iz) is :




Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $S_1, S_2$ and $S_3$ be three sets defined as $S_1 = \{z \in C : |z - 1| \le \sqrt{2}\}$ ,$S_2 = \{z \in C : \text{Re}((1 - i)z) \ge 1\}$ $S_3 = \{z \in C : \text{Im}(z) \le 1\}$ Then the set $S_1 \cap S_2 \cap S_3$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (17 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
The equation $\operatorname{Im}\left( \dfrac{iz - 2}{z - i} \right) + 1 = 0,; z \in \mathbb{C},; z \neq i$ represents a part of a circle having radius equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2017 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $z$ be a complex number such that $\left|\dfrac{z-2i}{z+i}\right|=2,\ z\ne -i$. Then $z$ lies on the circle of radius $2$ and centre:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (25 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $r$ and $\theta$ respectively be the modulus and amplitude of the complex number $z = 2 - i\left(2\tan\dfrac{5\pi}{8}\right)$, then $(r, \theta)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
The fractional part of the number $\dfrac{4^{2022}}{15}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (13 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
All the points in the set
$S = \left\{ {{{\alpha + i} \over {\alpha - i}}:\alpha \in R} \right\}(i = \sqrt { - 1} )$ lie on a :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $\mathop {\lim }\limits_{x \to 0} {{{{\sin }^{ - 1}}x - {{\tan }^{ - 1}}x} \over {3{x^3}}}$ is equal to L, then the value of (6L + 1) is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (18 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the equation $a|z{|^2} + \overline {\overline \alpha z + \alpha \overline z } + d = 0$ represents a circle where a, d are real constants then which of the following condition is correct?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (18 March Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $S=\{\,z\in\mathbb{C}:\ \overline{z}=i\big(z^2+\operatorname{Re}(\overline{z})\big)\,\}$. Then $\displaystyle \sum_{z\in S}|z|^2$ is equal to:






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (13 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z$ be a complex number such that $|z| = 1$. If $\dfrac{2 + k\bar{z}}{k + z} = kz$, $k \in \mathbb{R}$, then the maximum distance of $k + ik^2$ from the circle $|z - (1 + 2i)| = 1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
For two non-zero complex numbers $z_{1}$ and $z_{2}$, if $\operatorname{Re}(z_{1}z_{2})=0$ and $\operatorname{Re}(z_{1}+z_{2})=0$, then which of the following are possible? A. $\operatorname{Im}(z_{1})>0$ and $\operatorname{Im}(z_{2})>0$ B. $\operatorname{Im}(z_{1})<0$ and $\operatorname{Im}(z_{2})>0$ C. $\operatorname{Im}(z_{1})>0$ and $\operatorname{Im}(z_{2})<0$ D. $\operatorname{Im}(z_{1})<0$ and $\operatorname{Im}(z_{2})<0$ Choose the correct answer from the options given below:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
A value of $\theta$ for which $ \displaystyle \frac{2 + 3i \sin \theta}{1 - 2i,} \cdot \frac{1}{\sin \theta} $ is purely imaginary, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (Offline) PYQ

Solution


JEE MAIN PYQ
Let $z$ be a complex number such that the real part of $\displaystyle \frac{z-2i}{z+2i}$ is zero. Then, the maximum value of $\lvert z-(6+8i)\rvert$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z\in\mathbb{C}$ be such that $|z|<1$. If $\omega=\dfrac{5+3z}{5(1-z)},z$, then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let a complex number be w = 1 $-$ ${\sqrt 3 }$i. Let another complex number z be such that |zw| = 1 and arg(z) $-$ arg(w) = ${\pi \over 2}$. Then the area of the triangle with vertices origin, z and w is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (18 March Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let the solution curve of the differential equation

$x{{dy} \over {dx}} - y = \sqrt {{y^2} + 16{x^2}} $, $y(1) = 3$ be $y = y(x)$. Then y(2) is equal to:






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $\alpha$ and $\beta$ be the roots of the equation x2 + (2i $-$ 1) = 0. Then, the value of |$\alpha$8 + $\beta$8| is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
If z1, z2 are complex numbers such that Re(z1) = |z1 – 1|, Re(z2) = |z2 – 1| , and arg(z1 - z2) = ${\pi \over 6}$, then Im(z1 + z2) is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 3 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
If $\alpha$ and $\beta$ are the distinct roots of the equation ${x^2} + {(3)^{1/4}}x + {3^{1/2}} = 0$, then the value of ${\alpha ^{96}}({\alpha ^{12}} - 1) + {\beta ^{96}}({\beta ^{12}} - 1)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (20 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the set $\left\{\operatorname{Re}\!\left(\dfrac{z-\overline{z}+z\overline{z}}{\,2-3z+5\overline{z}\,}\right): z\in\mathbb{C},\ \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha,\beta]$, then $24(\beta-\alpha)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If z is a complex number such that ${{z - i} \over {z - 1}}$ is purely imaginary, then the minimum value of | z $-$ (3 + 3i) | is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (31 August Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z_1$ and $z_2$ be two complex numbers such that $z_1+z_2=5$ and $z_1^{3}+z_2^{3}=20+15i$. Then, $\,\big|z_1^{4}+z_2^{4}\big|\,$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (31 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
The point represented by $2 + i$ in the Argand plane moves $1$ unit eastwards, then $2$ units northwards and finally from there $2\sqrt{2}$ units in the south-westwards direction. Then its new position in the Argand plane is at the point represented by:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2016 (9 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $\alpha$ be a root of the equation 1 + x2 + x4 = 0. Then, the value of $\alpha$1011 + $\alpha$2022 $-$ $\alpha$3033 is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $u = {{2z + i} \over {z - ki}}$, z = x + iy and k > 0. If the curve represented
by Re(u) + Im(u) = 1 intersects the y-axis at the points P and Q where PQ = 5, then the value of k is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 4 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
Let arg(z) represent the principal argument of the complex number z. Then, |z| = 3 and arg(z $-$ 1) $-$ arg(z + 1) = ${\pi \over 4}$ intersect :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (29 June Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $a>0$ and $z=\dfrac{(1+i)^{2}}{,a-i,}$ has magnitude $\sqrt{\dfrac{2}{5}}$, then $\overline{z}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $S=\left\{\,z\in\mathbb{C}:\ |z-1|=1 \ \text{and}\ \left|(\sqrt2-1)(z+\bar z)-i(z-\bar z)\right|=2\sqrt2\,\right\}$. Let $z_1,z_2\in S$ be such that $|z_1|=\max_{z\in S}|z|$ and $|z_2|=\min_{z\in S}|z|$. Then $\ \left|\sqrt2\,z_1-z_2\right|^{2}$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (1 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
If the real part of the complex number ${(1 - \cos \theta + 2i\sin \theta )^{ - 1}}$ is ${1 \over 5}$ for $\theta \in (0,\pi )$, then the value of the integral $\int_0^\theta {\sin x} dx$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (20 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $|z|=1$ with $\arg(z_1)=-\frac{\pi}{4}$, $\arg(z_2)=0$ and $\arg(z_3)=\frac{\pi}{4}$. If $\left|\,z_1\overline{z_2}+z_2\overline{z_3}+z_3\overline{z_1}\,\right|^2=\alpha+\beta\sqrt{2}$, $\alpha,\beta\in\mathbb{Z}$, then the value of $\alpha^2+\beta^2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
The real part of the complex number ${{{{(1 + 2i)}^8}\,.\,{{(1 - 2i)}^2}} \over {(3 + 2i)\,.\,\overline {(4 - 6i)} }}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (30 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
The real part of the complex number ${{{{(1 + 2i)}^8}\,.\,{{(1 - 2i)}^2}} \over {(3 + 2i)\,.\,\overline {(4 - 6i)} }}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (30 June Morning Shift) PYQ

Solution


JEE MAIN PYQ
If a and b are real numbers such that ${\left( {2 + \alpha } \right)^4} = a + b\alpha$ where $\alpha = {{ - 1 + i\sqrt 3 } \over 2}$ then a + b is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 4 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
Let $z \in \mathbb{C}$ be such that $\dfrac{z^2+3i}{z-2+i}=2+3i$. Then the sum of all possible values of $z^2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z$ is a complex number such that $|z|\le1$, then the minimum value of $\left|z+\dfrac{1}{2}(3+4i)\right|$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2024 (1 February Evening Shift) PYQ

Solution


JEE MAIN PYQ
If $z_1,z_2,z_3\in\mathbb{C}$ are the vertices of an equilateral triangle whose centroid is $z_0$, then $\displaystyle \sum_{k=1}^{3}(z_k-z_0)^2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let $z_{0}$ be a root of the quadratic equation $x^{2}+x+1=0$. If $z=3+6i\,z_{0}^{81}-3i\,z_{0}^{93}$, then $\arg z$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (9 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let n denote the number of solutions of the equation z2 + 3$\overline z $ = 0, where z is a complex number. Then the value of $\sum\limits_{k = 0}^\infty {{1 \over {{n^k}}}} $ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2021 (22 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
If the four complex numbers $z,\overline z ,\overline z - 2{\mathop{\rm Re}\nolimits} \left( {\overline z } \right)$ and $z-2Re(z)$ represent the vertices of a square ofside 4 units in the Argand plane, then $|z|$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Morning) PYQ

Solution


JEE MAIN PYQ
For $z \in \mathbb{C}$ if the minimum value of $\lvert z - 3\sqrt{2}\rvert + \lvert z - p\sqrt{2}i\rvert$ is $5\sqrt{2}$, then a value of $p$ is ________.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (25 July Evening Shift) PYQ

Solution


JEE MAIN PYQ
For all $z\in\mathbb{C}$ on the curve $\mathcal{C}_1:\ |z|=4$, let the locus of the point $z+\dfrac{1}{z}$ be the curve $\mathcal{C}_2$. Then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (31 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
If $z$ and $w$ are two complex numbers such that $|zw|=1$ and $\arg(z)-\arg(w)=\dfrac{\pi}{2}$, then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 April Evening Shift) PYQ

Solution


JEE MAIN PYQ
Let the curve $z(1+i)+\overline{z}(1-i)=4,\ z\in\mathbb{C}$, divide the region $|z-3|\le 1$ into two parts of areas $\alpha$ and $\beta$. Then $|\alpha-\beta|$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ
The equation $|z - i| = |z - 1|$, where $i = \sqrt{-1}$, represents :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (12 April Morning Shift) PYQ

Solution


JEE MAIN PYQ
The value of ${\left( {{{ - 1 + i\sqrt 3 } \over {1 - i}}} \right)^{30}}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 5 September 2020 (Evening) PYQ

Solution


JEE MAIN PYQ
Let $O$ be the origin and $A$ be the point $z_1 = 1 + 2i$. If $B$ is the point $z_2$, $\mathrm{Re}(z_2) < 0$, such that $OAB$ is a right-angled isosceles triangle with $OB$ as hypotenuse, then which of the following is NOT true?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2022 (26 July Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3|z_1| = 4|z_2|.$ If $z = \dfrac{3z_1}{2z_2} + \dfrac{2z_2}{3z_1}$, then :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2019 (10 January Morning Shift) PYQ

Solution


JEE MAIN PYQ
A complex number $z$ is said to be unimodular if $|z|=1$. Suppose $z_{1}$ and $z_{2}$ are complex numbers such that $\dfrac{z_{1}-2z_{2}}{2-z_{1}\overline{z_{2}}}$ is unimodular and $z_{2}$ is not unimodular. Then the point $z_{1}$ lies on a :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2015 (Offline) PYQ

Solution


JEE MAIN PYQ
If the center and radius of the circle $\left|\dfrac{z-2}{z-3}\right|=2$ are respectively $(\alpha,\beta)$ and $\gamma$, then $3(\alpha+\beta+\gamma)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (1 February Morning Shift) PYQ

Solution


JEE MAIN PYQ
Let $\left|\frac{\bar{z}-i}{2 \bar{z}+i}\right|=\frac{1}{3}, z \in C$, be the equation of a circle with center at $C$. If the area of the triangle, whose vertices are at the points $(0,0), C$ and $(\alpha, 0)$ is 11 square units, then $\alpha^2$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution



JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...