Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

JEE MAIN Previous Year Questions (PYQs)

JEE MAIN 2025 PYQ


JEE MAIN PYQ 2025
Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the three sides of a triangle be on the lines $4x-7y+10=0$, $x+y=5$ and $7x+4y=15$. Then the distance of its orthocentre from the orthocentre of the triangle formed by the lines $x=0$, $y=0$ and $x+y=1$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the line $3x - 2y + 12 = 0$ intersects the parabola $4y = 3x^2$ at the points $A$ and $B$, then at the vertex of the parabola, the line segment $AB$ subtends an angle equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
In the expansion of $\left(\sqrt[3]{2}+\dfrac{1}{\sqrt[3]{3}}\right)^{n},\ n\in\mathbb{N}$, if the ratio of $15^{\text{th}}$ term from the beginning to the $15^{\text{th}}$ term from the end is $\dfrac{1}{6}$, then the value of ${}^nC_3$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution

$T_r=\binom{n}{r-1}a^{,n-r+1}b^{,r-1}$ for $(a+b)^n$. 
$15^{\text{th}}$ from the beginning: $T_{15}^{(beg)}=\binom{n}{14}a^{,n-14}b^{14}$. 
$15^{\text{th}}$ from the end (swap $a,b$): $T_{15}^{(end)}=\binom{n}{14}b^{,n-14}a^{14}$. 
Given $\dfrac{T_{15}^{(beg)}}{T_{15}^{(end)}}=\dfrac{1}{6}$, 
coefficients cancel: $\left(\dfrac{a}{b}\right)^{n-28}=\dfrac{1}{6}$. 
Here $a=2^{1/3},\ b=3^{-1/3}$
$\ \Rightarrow\ \dfrac{a}{b}=2^{1/3}\cdot 3^{1/3}=6^{1/3}$. 
So $(6^{1/3})^{,n-28}=6^{-1}$
$\ \Rightarrow\ n-28=-3\ \Rightarrow\ n=25$. 
Therefore, $\binom{n}{3}=\binom{25}{3}=\dfrac{25\cdot24\cdot23}{6}=2300$.

JEE MAIN PYQ 2025
If the first term of an A.P. is $3$ and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first $20$ terms is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the arc $AC$ of a circle subtend a right angle at the centre $O$. If the point $B$ on the arc $AC$ divides the arc $AC$ such that $\dfrac{\text{length of arc }AB}{\text{length of arc }BC}=\dfrac{1}{5}$, and $\overrightarrow{OC}=\alpha\,\overrightarrow{OA}+\beta\,\overrightarrow{OB}$, then $\alpha+\sqrt{2}\,(\sqrt{3}-1)\,\beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A={-3,-2,-1,0,1,2,3}$ and $R$ be a relation on $A$ defined by $xRy$ iff $2x-y\in{0,1}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in $R$ to make it reflexive and symmetric relations, respectively. Then $l+m+n$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the area of $\triangle PQR$ with vertices $P(5,4),\ Q(-2,4)$ and $R(a,b)$ be $35$ square units. If its orthocenter and centroid are $O\!\left(2,\dfrac{14}{5}\right)$ and $C(c,d)$ respectively, then $c+2d$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the domains of the functions $f(x)=\log_{4}\big(\log_{3}\big(\log_{7}\big(8-\log_{2}(x^{2}+4x+5)\big)\big)\big)$ and $g(x)=\sin^{-1}\left(\dfrac{7x+10}{x-2}\right)$ be $(\alpha,\beta)$ and $[\gamma,\delta]$, respectively. Then $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $A,B$ and $\big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\big)$ are non-singular matrices of the same order, then the inverse of $A\Big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\Big)^{-1}B$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the mean and the standard deviation of the observation $2,3,3,3,4,5,7,a,b$ be $4$ and $\sqrt{2}$ respectively. Then the mean deviation about the mode of these observations is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $R=\{(1,2),(2,3),(3,3)\}$ be a relation on the set $\{1,2,3,4\}$. The minimum number of ordered pairs that must be added to $R$ so that it becomes an equivalence relation is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the sum of the focal distances of the point $P(4,3)$ on the hyperbola $H:\ \dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ be $8\sqrt{\dfrac{5}{3}}$. If for $H$, the length of the latus rectum is $l$ and the product of the focal distances of the point $P$ is $m$, then $9l^{2}+6m$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $I=\displaystyle\int_{0}^{\pi/2}\frac{\sin^{3/2}x}{\sin^{3/2}x+\cos^{3/2}x}\,dx$, then $\displaystyle\int_{0}^{2I}\frac{x\sin x\cos x}{\sin^{4}x+\cos^{4}x}\,dx$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfy $A^n=A^{n-2}+A^2-I$ for $n \geqslant 3$. Then the sum of all the elements of $\mathrm{A}^{50}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of complex numbers $z$ satisfying $|z|=1$ and $\left|\dfrac{z}{\overline{z}}+\dfrac{\overline{z}}{z}\right|=1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $a>0$. If the function $f(x)=6x^3-45ax^2+108a^2x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1x_2=54$, then $a+x_1+x_2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The length of the chord of the ellipse $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{2}=1$ whose midpoint is $\left(1,\dfrac{1}{2}\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If a curve $y=y(x)$ passes through the point $\left(1,\dfrac{\pi}{2}\right)$ and satisfies the differential equation $(7x^{4}\cot y-e^{x}\csc y),\dfrac{dx}{dy}=x^{5},\ x\ge1$, then at $x=2$, the value of $\cos y$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the point $A$ divide the line segment joining the points $P(-1,-1,2)$ and $Q(5,5,10)$ internally in the ratio $r:1\ (r>0)$. If $O$ is the origin and $(\overrightarrow{OQ}\cdot\overrightarrow{OA})-\dfrac{1}{5}\lvert\overrightarrow{OP}\times\overrightarrow{OA}\rvert^{2}=10$, then the value of $r$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the sum of the first $20$ terms of the series $\dfrac{4\cdot1}{4+3\cdot1^{2}+1^{4}}+\dfrac{4\cdot2}{4+3\cdot2^{2}+2^{4}}+\dfrac{4\cdot3}{4+3\cdot3^{2}+3^{4}}+\dfrac{4\cdot4}{4+3\cdot4^{2}+4^{4}}+\cdots$ is $\dfrac{m}{n}$, where $m$ and $n$ are coprime, then $m+n$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let for two distinct values of $p$ the lines $y=x+p$ touch the ellipse $E:\ \dfrac{x^{2}}{4^{2}}+\dfrac{y^{2}}{3^{2}}=1$ at the points $A$ and $B$. Let the line $y=x$ intersect $E$ at the points $C$ and $D$. Then the area of the quadrilateral $ABCD$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let X = ℝ × ℝ. Define a relation R on X by (a₁,b₁) R (a₂,b₂) ⇔ b₁ = b₂. Statement I: R is an equivalence relation. Statement II: For some (a,b) ∈ X, the set S = { (x,y) ∈ X : (x,y) R (a,b) } represents a line parallel to y = x.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The centre of a circle $C$ is at the centre of the ellipse $E:\ \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1,\ a>b$. Let $C$ pass through the foci $F_{1}$ and $F_{2}$ of $E$ such that the circle $C$ and the ellipse $E$ intersect at four points. Let $P$ be one of these four points. If the area of the triangle $PF_{1}F_{2}$ is $30$ and the length of the major axis of $E$ is $17$, then the distance between the foci of $E$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the area of the region $\left\{(x, y):-1 \leq x \leq 1,0 \leq y \leq \mathrm{a}+\mathrm{e}^{|x|}-\mathrm{e}^{-x}, \mathrm{a}>0\right\}$ is $\frac{\mathrm{e}^2+8 \mathrm{e}+1}{\mathrm{e}}$, then the value of $a$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
A line passing through the point $A(-2,0)$ touches the parabola $P: y^2=x-2$ at the point $B$ in the first quadrant. The area of the region bounded by the line $\overline{AB}$, parabola $P$ and the $x$-axis is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the range of the function $f(x)=6+16\cos x\cdot \cos\!\left(\frac{\pi}{3}-x\right)\cdot \cos\!\left(\frac{\pi}{3}+x\right)\cdot \sin 3x\cdot \cos 6x,\ x\in\mathbb{R}$ be $[\alpha,\beta]$. Then the distance of the point $(\alpha,\beta)$ from the line $3x+4y+12=0$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the product of $\omega_1=(8+i)\sin\theta+(7+4i)\cos\theta$ and $\omega_2=(1+8i)\sin\theta+(4+7i)\cos\theta$ be $\alpha+i\beta$, where $i=\sqrt{-1}$. Let $p$ and $q$ be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $p+q$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The system of equations $\begin{cases} x+y+z=6,\\ x+2y+5z=9,\\ x+5y+\lambda z=\mu \end{cases}$ has no solution if:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $1^{2}\cdot{^{15}C_{1}}+2^{2}\cdot{^{15}C_{2}}+3^{2}\cdot{^{15}C_{3}}+\cdots+15^{2}\cdot{^{15}C_{15}}=2^{m}\cdot3^{n}\cdot5^{k}$, where $m,n,k\in\mathbb{N}$, then $m+n+k$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The distance of the line $\displaystyle \frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the line $\displaystyle \frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A$ be the point of intersection of the lines $L_{1}:\ \dfrac{x-7}{1}=\dfrac{y-5}{0}=\dfrac{z-3}{-1}$ and $L_{2}:\ \dfrac{x-1}{3}=\dfrac{y+3}{4}=\dfrac{z+7}{5}$. Let $B$ and $C$ be the points on the lines $L_{1}$ and $L_{2}$ respectively such that $AB=AC=\sqrt{15}$. Then the square of the area of the triangle $ABC$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\displaystyle \lim_{x\to\infty}\frac{(2x^{2}-3x+5),(3x-1)^{x/2}}{(3x^{2}+5x+4),\sqrt{(3x+2)^{x}}}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of the infinite series $\cot^{-1}\left(\dfrac{7}{4}\right)+\cot^{-1}\left(\dfrac{19}{4}\right)+\cot^{-1}\left(\dfrac{30}{4}\right)+\cot^{-1}\left(\dfrac{67}{4}\right)+\cdots$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The axis of a parabola is the line $y=x$ and its vertex and focus are in the first quadrant at distances $\sqrt{2}$ and $2\sqrt{2}$ units from the origin, respectively. If the point $(1,k)$ lies on the parabola, then a possible value of $k$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\mathrm{A}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geqslant 3\}$ and $\mathrm{B}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$. If $\mathrm{C}=\{(x, y) \in \mathrm{A} \cap \mathrm{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in \mathrm{C}}|x+y|$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x)+2f!\left(\frac{1}{x}\right)=x^{2}+5$ and $2g(x)-3g!\left(\frac{1}{x}\right)=x$, $x>0$. If $\alpha=\displaystyle\int_{1}^{2} f(x),dx$ and $\beta=\displaystyle\int_{1}^{2} g(x),dx$, then the value of $9\alpha+\beta$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If in the expansion of $(1+x)^p(1-x)^q$, the coefficients of $x$ and $x^2$ are $1$ and $-2$, respectively, then $p^2+q^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider two sets $A$ and $B$, each containing three numbers in A.P. Let the sum and the product of the elements of $A$ be $36$ and $p$ respectively and the sum and the product of the elements of $B$ be $36$ and $q$ respectively. Let $d$ and $D$ be the common differences of the A.P.s in $A$ and $B$ respectively such that $D=d+3$, $d>0$. If $\dfrac{p+q}{p-q}=\dfrac{19}{5}$, then $p-q$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the rod $A B$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the values of $p$, for which the shortest distance between the lines $\dfrac{x+1}{3}=\dfrac{y}{4}=\dfrac{z}{5}$ and $\vec r=(p\hat i+2\hat j+\hat k)+\lambda(2\hat i+3\hat j+4\hat k)$ is $\dfrac{1}{\sqrt6}$, be $a,b$ $(a




Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f$ be a differentiable function on $\mathbb{R}$ such that $f(2)=1,\ f'(2)=4$. Let $\displaystyle \lim_{x\to 0}\big(f(2+x)\big)^{\frac{3}{x}}=e^{\alpha}$. Then the number of times the curve $y=4x^3-4x^2-4(\alpha-7)x-\alpha$ meets the $x$-axis is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm , the ice-cream melts at the rate of $81 \mathrm{~cm}^3 / \mathrm{min}$ and the thickness of the ice-cream layer decreases at the rate of $\frac{1}{4 \pi} \mathrm{~cm} / \mathrm{min}$. The surface area (in $\mathrm{cm}^2$ ) of the chocolate ball (without the ice-cream layer) is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
From a group of 7 batsmen and 6 bowlers, 10 players are to be chosen for a team, which should include atleast 4 batsmen and atleast 4 bowlers. One batsmen and one bowler who are captain and vice-captain respectively of the team should be included. Then the total number of ways such a selection can be made, is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the shortest distance from $(a,0)$, $a>0$, to the parabola $y^{2}=4x$ be $4$. Then the equation of the circle passing through the point $(a,0)$ and the focus of the parabola, with centre on the axis of the parabola, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $C_1$ be the circle in the third quadrant of radius 3 , that touches both coordinate axes. Let $C_2$ be the circle with centre $(1,3)$ that touches $\mathrm{C}_1$ externally at the point $(\alpha, \beta)$. If $(\beta-\alpha)^2=\frac{m}{n}$ , $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $x=x(y)$ be the solution of the differential equation $y=\left(x-y \frac{\mathrm{~d} x}{\mathrm{~d} y}\right) \sin \left(\frac{x}{y}\right), y>0$ and $x(1)=\frac{\pi}{2}$. Then $\cos (x(2))$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let P be the parabola, whose focus is $(-2,1)$ and directrix is $2 x+y+2=0$. Then the sum of the ordinates of the points on P, whose abscissa is $-$2, is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The mean and standard deviation of $100$ observations are $40$ and $5.1$, respectively. By mistake one observation is taken as $50$ instead of $40$. If the correct mean and the correct standard deviation are $\mu$ and $\sigma$ respectively, then $10(\mu+\sigma)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\triangle ABC$ be the triangle such that the equations of lines $AB$ and $AC$ are $3y-x=2$ and $x+y=2$, respectively, and the points $B$ and $C$ lie on the $x$-axis. If $P$ is the orthocentre of $\triangle ABC$, then the area of $\triangle PBC$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\displaystyle \lim_{x\to 0^{+}}\frac{\tan\big(5x^{1/5}\big),\ln(1+3x^{2})}{\big(\tan^{-1}(3\sqrt{2})\big),\big(e^{x\sqrt{3}}-1\big)}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $y=y(x)$ be the solution curve of the differential equation $x(x^{2}+e^{x})^{2}dy+\big(e^{x}(x-2)y-x^{3}\big)dx=0, x>0,$ passing through the point $(1,0)$. Then $y(2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \lim_{x \to 0} \csc x \left( \sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 x + \sin x + 4} \right)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The remainder when $\big((64)^{(64)}\big)^{(64)}$ is divided by $7$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}-{0}\to\mathbb{R}$ be a function such that $f(x) - 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}.$ If $\displaystyle \lim_{x\to 0}\left(\frac{1}{x} + f(x)\right) = \beta,\ \alpha, \beta \in \mathbb{R},$ then $\alpha + 2\beta$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If for $\theta\in\left[-\dfrac{\pi}{3},0\right]$, the points $(x,y)=\big(3\tan(\theta+\tfrac{\pi}{3}),,2\tan(\theta+\tfrac{\pi}{6})\big)$ lie on $xy+\alpha x+\beta y+\gamma=0$, then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The product of all the rational roots of the equation $ (x^2 - 9x + 11)^2 - (x - 4)(x - 5) = 3 $ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the system of equations :$ \begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 12 x+3 y-(4+\lambda) z=16-\mu \end{aligned}$$

have infinitely many solutions. Then the radius of the circle centred at $(\lambda, \mu)$ and touching the line $4 x=3 y$ is :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
For some $ n \ne 10 $, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion of $ (1 + x)^{n+4} $ be in A.P. Then the largest coefficient in the expansion of $ (1 + x)^{n+4} $ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the set of all values of $p\in\mathbb{R}$, for which both the roots of the equation $x^{2}-(p+2)x+(2p+9)=0$ are negative real numbers, be the interval $(\alpha,\beta)$. Then $\beta-2\alpha$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x) = \dfrac{9x^2 + 16}{2^{2x+1} + 2^{x+4} + 32}$. Then the value of $8 \big( f\left(\dfrac{1}{15}\right) + f\left(\dfrac{2}{15}\right) + \dots + f\left(\dfrac{50}{15}\right) \big)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Among the statements (S1): The set ${z\in\mathbb{C}\setminus{-i}:\ |z|=1\ \text{ and }\ \dfrac{z-i}{z+i}\ \text{is purely real}}$ contains exactly two elements and (S2): The set ${z\in\mathbb{C}\setminus{-1}:\ |z|=1\ \text{ and }\ \dfrac{z-1}{z+1}\ \text{is purely imaginary}}$ contains infinitely many elements.





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $I(m,n) = \displaystyle \int_0^1 x^{m-1}(1-x)^{n-1} dx, ; m,n > 0$, then $I(9,14) + I(10,13)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The integral $\displaystyle \int_{0}^{\pi}\frac{(x+3)\sin x}{1+3\cos^{2}x}dx$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\alpha$ and $\beta$ are the roots of the equation $2x^2 - 3x - 2i = 0$, where $i = \sqrt{-1}$, then $16 \cdot \text{Re}\left( \dfrac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^5 + \beta^5} \right) \cdot \text{Im}\left( \dfrac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^5 + \beta^5} \right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the line $L$ pass through $(1,1,1)$ and intersect the lines $\dfrac{x-1}{2} = \dfrac{y+1}{3} = \dfrac{z-1}{4}$ and $\dfrac{x-3}{1} = \dfrac{y-4}{2} = \dfrac{z}{1}$. Then, which of the following points lies on the line $L$?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the product of the focal distances of the point $\left( \sqrt{3}, \dfrac{1}{2} \right)$ on the ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$, $(a > b)$, be $\dfrac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the area of the region bounded by the curves $y = 4 - \dfrac{x^2}{4}$ and $y = \dfrac{x-4}{2}$ is equal to $\alpha$, then $6\alpha$ equals





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $y = y(x)$ be the solution of the differential equation $\left(xy - 5x^2\sqrt{1 + x^2}\right)dx + (1 + x^2)dy = 0$, $y(0) = 0$. Then $y(\sqrt{3})$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the angle $\theta,;0<\theta<\tfrac{\pi}{2}$ between two unit vectors $\hat a$ and $\hat b$ be $\sin^{-1}\left(\tfrac{\sqrt{65}}{9}\right)$. If the vector $\vec c=3\hat a+6\hat b+9(\hat a\times\hat b)$, then the value of $9(\vec c\cdot\hat a)-3(\vec c\cdot\hat b)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let in a $\triangle ABC$, the length of the side $AC$ be $6$, the vertex $B$ be $(1, 2, 3)$ and the vertices $A, C$ lie on the line $\dfrac{x - 6}{3} = \dfrac{y - 7}{2} = \dfrac{z - 7}{-2}$. Then the area (in sq. units) of $\triangle ABC$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $x_1,x_2,x_3,x_4$ be in a geometric progression. If $2,7,9,5$ are subtracted respectively from $x_1,x_2,x_3,x_4$, then the resulting numbers are in an arithmetic progression. Then the value of $\dfrac1{24}(x_1x_2x_3x_4)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the line passing through the points $(-1, 2, 1)$ and parallel to the line $\dfrac{x - 1}{2} = \dfrac{y + 1}{3} = \dfrac{z}{4}$ intersect the line $\dfrac{x + 2}{3} = \dfrac{y - 3}{2} = \dfrac{z - 4}{1}$ at the point $P$. Then the distance of $P$ from the point $Q(4, -5, 1)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the shortest distance between the lines $\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$ and $\dfrac{x}{1}=\dfrac{y}{\alpha}=\dfrac{z-5}{1}$ is $\dfrac{5}{\sqrt6}$, then the sum of all possible values of $\alpha$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$A$ and $B$ alternately throw a pair of dice. $A$ wins if he throws a sum of $5$ before $B$ throws a sum of $8$, and $B$ wins if he throws a sum of $8$ before $A$ throws a sum of $5$. The probability that $A$ wins if $A$ makes the first throw, is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^{3}+ax^{2}+b\log_{e}|x|+1,;x\neq0$. Let $m$ and $M$ respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\dfrac{1}{2}\right]$. Then $|M+m|$ is equal to (take $\log_{e}2=0.7$):





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$ and $\vec{c}$ be three vectors such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}$. If the vector $\vec{c}$ is perpendicular to $\vec{b}$ and $\vec{a} \cdot \vec{c} = 5$, then $|\vec{c}|$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}\to\mathbb{R}$ be a polynomial of degree four having extreme values at $x=4$ and $x=5$. If $\displaystyle \lim_{x\to 0}\frac{f(x)}{x^{2}}=5$, then $f(2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider the region $R = {(x, y) : x \le y \le 9 - \dfrac{11}{3}x^2, , x \ge 0}$. The area of the largest rectangle of sides parallel to the coordinate axes and inscribed in $R$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $y=y(x)$ be the solution of the differential equation $(x^{2}+1),y'-2xy=(x^{4}+2x^{2}+1)\cos x$, with $y(0)=1$. Then $\displaystyle \int_{-3}^{3} y(x),dx$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area of the region ${(x, y) : x^2 + 4x + 2 \le y \le |x + 2|}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the locus of $z\in\mathbb{C}$, such that $\operatorname{Re}!\left(\dfrac{z-1}{2z+i}\right)+\operatorname{Re}!\left(\dfrac{z-1}{2z-i}\right)=2$, is a circle of radius $r$ and center $(a,b)$, then $\dfrac{15ab}{r^2}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $S_n = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + \dfrac{1}{20} + \dots$ up to $n$ terms. If the sum of the first six terms of an A.P. with first term $-p$ and common difference $p$ is $\sqrt{2026}, S_{2025}$, then the absolute difference between $20^{\text{th}}$ and $15^{\text{th}}$ terms of the A.P. is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $a_n$ be the $n^{\text{th}}$ term of an A.P. If $S_n=a_1+a_2+\cdots+a_n=700$, $a_6=7$ and $S_7=7$, then $a_n$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
For a statistical data $x_1, x_2, \ldots, x_{10}$ of $10$ values, a student obtained the mean as $5.5$ and $\sum_{i=1}^{10} x_i^2 = 371$. He later found that he had noted two values in the data incorrectly as $4$ and $5$, instead of the correct values $6$ and $8$, respectively. The variance of the corrected data is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A bag contains $19$ unbiased coins and one coin with head on both sides. One coin drawn at random is tossed and a head turns up. If the probability that the drawn coin was unbiased is $\dfrac{m}{n}$ with $\gcd(m,n)=1$, then $n^2-m^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the lines $3x - 4y - \alpha = 0$, $8x - 11y - 33 = 0$, and $2x - 3y + \lambda = 0$ be concurrent. If the image of the point $(1,2)$ in the line $2x - 3y + \lambda = 0$ is $\left(\dfrac{57}{13}, -\dfrac{40}{13}\right)$, then $|\alpha \lambda|$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the range of the function $f(x)=\dfrac{5-x}{x^2-3x+2}$, $x\ne1,2$, is $(-\infty,\alpha]\cup[\beta,\infty)$, then $\alpha^2+\beta^2$ is equal to:f





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the system of equations $2x - y + z = 4$, $5x + \lambda y + 3z = 12$, $100x - 47y + \mu z = 212$ has infinitely many solutions, then $\mu - 2\lambda$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of real roots of the equation $x|x-2|+3|x-3|+1=0$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let circle $C$ be the image of $x^2 + y^2 - 2x + 4y - 4 = 0$ in the line $2x - 3y + 5 = 0$ and $A$ be the point on $C$ such that $OA$ is parallel to $x$-axis and $A$ lies on the right hand side of the centre $O$ of $C$. If $B(\alpha,\beta)$, with $\beta < 4$, lies on $C$ such that the length of the arc $AB$ is $(1/6)^{\text{th}}$ of the perimeter of $C$, then $\beta - \sqrt{3},\alpha$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the length of a latus rectum of an ellipse $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$ be $10$. If its eccentricity is the minimum value of $f(t)=t^{2}+t+\dfrac{11}{12}$, $t\in\mathbb{R}$, then $a^{2}+b^{2}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
In an arithmetic progression, if $S_{40} = 1030$ and $S_{12} = 57$, then $S_{30} - S_{10}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $e_1$ and $e_2$ be the eccentricities of the ellipse $\dfrac{x^2}{b^2}+\dfrac{y^2}{25}=1$ and the hyperbola $\dfrac{x^2}{16}-\dfrac{y^2}{b^2}=1$, respectively. If $b<5$ and $e_1e_2=1$, then the eccentricity of the ellipse having its axes along the coordinate axes and passing through all four foci (two of the ellipse and two of the hyperbola) is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A = [a_{ij}]$ be a square matrix of order $2$ with entries either $0$ or $1$. Let $E$ be the event that $A$ is an invertible matrix. Then the probability $\mathrm{P}(E)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the equation of the line passing through the point $ \left( 0, -\frac{1}{2}, 0 \right) $ and perpendicular to the lines $ \vec{r} = \lambda \left( \hat{i} + a\hat{j} + b\hat{k} \right) $ and $ \vec{r} = \left( \hat{i} - \hat{j} - 6\hat{k} \right) + \mu \left( -b \hat{i} + a\hat{j} + 5\hat{k} \right) $ is $ \frac{x-1}{-2} = \frac{y+4}{d} = \frac{z-c}{-4} $, then $ a+b+c+d $ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $(2,3)$ be the largest open interval in which the function $f(x)=2\log_e(x-2)-x^2+ax+1$ is strictly increasing and $(b,c)$ be the largest open interval in which the function $g(x)=(x-1)^3(x+2-a)^2$ is strictly decreasing. Then $100(a+b-c)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the sum of the second, fourth and sixth terms of a G.P. of positive terms is $21$ and the sum of its eighth, tenth and twelfth terms is $15309$, then the sum of its first nine terms is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A={,x\in(0,\pi)-{\tfrac{\pi}{2}}: \log_{(2/\pi)}|\sin x|+\log_{(2/\pi)}|\cos x|=2,}$ and $B={,x\ge 0:\sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0,}$. Then $n(A\cup B)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the area of the region ${(x,y):, 1+x^2 \le y \le \min{x+7,; 11-3x}}$ is $A$, then $3A$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
For some $a, b,$ let $f(x)=\left|\begin{array}{ccc}\mathrm{a}+\frac{\sin x}{x} & 1 & \mathrm{~b} \\ \mathrm{a} & 1+\frac{\sin x}{x} & \mathrm{~b} \\ \mathrm{a} & 1 & \mathrm{~b}+\frac{\sin x}{x}\end{array}\right|, x \neq 0, \lim \limits_{x \rightarrow 0} f(x)=\lambda+\mu \mathrm{a}+\nu \mathrm{b}.$ Then $(\lambda+\mu+v)^2$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of solutions of the equation

$ \cos 2\theta \cos \frac{\theta}{2} + \cos \frac{5\theta}{2} = 2\cos^3 \frac{5\theta}{2} $ in $ \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] $ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area of the region enclosed by the curves $y=\mathrm{e}^x, y=\left|\mathrm{e}^x-1\right|$ and $y$-axis is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\text{Consider the lines } L_{1}: , x-1=y-2=z \quad \text{and} \quad L_{2}: , x-2=y=z-1.$ $\text{Let the feet of the perpendiculars from the point } P(5,1,-3) \text{ on } L_{1} \text{ and } L_{2} \text{ be } Q \text{ and } R \text{ respectively.}$ $\text{If the area of the triangle } PQR \text{ is } A, \text{ then } 4A^{2}\text{ is equal to:}$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
$A={(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}:\ |\alpha-1|\le 4\ \text{and}\ |\beta-5|\le 6}$ $B={(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}:\ 16(\alpha-2)^2+9(\beta-6)^2\le 144}.$ Then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the system of equations $x+2y-3z=2$, $2x+\lambda y+5z=5$, $14x+3y+\mu z=33$ has infinitely many solutions, then $\lambda+\mu$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec a$ and $\vec b$ be vectors of the same magnitude such that $\displaystyle \frac{\lvert\vec a+\vec b\rvert+\lvert\vec a-\vec b\rvert}{\lvert\vec a+\vec b\rvert-\lvert\vec a-\vec b\rvert}=\sqrt2+1.$ Then $\displaystyle \frac{\lvert\vec a+\vec b\rvert^{2}}{\lvert\vec a\rvert^{2}}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Suppose $A$ and $B$ are the coefficients of $30^{\text{th}}$ and $12^{\text{th}}$ terms respectively in the binomial expansion of $(1+x)^{2n-1}$. If $2A=5B$, then $n$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the system of equations

x + 5y - z = 1

4x + 3y - 3z = 7

24x + y + λz = μ

λ, μ ∈ ℝ, have infinitely many solutions. Then the number of the solutions of this system,

if x, y, z are integers and satisfy 7 ≤ x + y + z ≤ 77, is :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the position vectors of three vertices of a triangle be $4\vec p+\vec q-3\vec r$, $-5\vec p+\vec q+2\vec r$ and $2\vec p-\vec q+2\vec r$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\dfrac{\vec p+\vec q+\vec r}{4}$ and $\alpha \vec p+\beta \vec q+\gamma \vec r$ respectively, then $\alpha+2\beta+5\gamma$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $p$ be the number of all triangles that can be formed by joining the vertices of a regular $n$-gon $P$, and $q$ be the number of all quadrilaterals that can be formed by joining the vertices of $P$. If $p+q=126$, then the eccentricity of the ellipse $\dfrac{x^2}{16}+\dfrac{y^2}{n}=1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $7 = 5 + \frac{1}{7}(5+\alpha) + \frac{1}{7^2}(5+2\alpha) + \frac{1}{7^3}(5+3\alpha) + \cdots$, then the value of $\alpha$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let a random variable $X$ take values $0,1,2,3$ with $P(X=0)=P(X=1)=p$, $P(X=2)=P(X=3)$ and $E(X^2)=2E(X)$. Then the value of $8p-1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the equation of the parabola with vertex $V!\left(\frac{3}{2},,3\right)$ and directrix $x+2y=0$ is $\alpha x^2+\beta y^2-\gamma xy-30x-60y+225=0$, then $\alpha+\beta+\gamma$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the orthocenter of the triangle formed by the lines y = x + 1, y = 4x - 8 and y = mx + c is at (3, -1), then m - c is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (7 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec a = 3\hat{i}-\hat{j}+2\hat{k}$, $\vec b=\vec a \times (\hat{i}-2\hat{k})$ and $\vec c=\vec b \times \hat{k}$. Then the projection of $\vec c-2\hat{j}$ on $\vec a$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The equation of the chord of the ellipse $\dfrac{x^2}{25}+\dfrac{y^2}{16}=1$, whose mid-point is $(3,1)$, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the points $\left(\dfrac{11}{2},,\alpha\right)$ lie on or inside the triangle with sides $x+y=11$, $x+2y=16$ and $2x+3y=29$. Then the product of the smallest and the largest values of $\alpha$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Group $A$ consists of $7$ boys and $3$ girls, while group $B$ consists of $6$ boys and $5$ girls. The number of ways $4$ boys and $4$ girls can be invited for a picnic if $5$ of them must be from group $A$ and the remaining $3$ from group $B$, is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $[x]$ denote the greatest integer function, and let $m$ and $n$ respectively be the numbers of the points where the function $f(x) = [x] + |x - 2|$, $-2 < x < 3$, is not continuous and not differentiable. Then $m + n$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of real solution(s) of the equation $x^2 + 3x + 2 = \min{|x - 3|,; |x + 2|}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:(0,\infty)\to\mathbb{R}$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f'(x)=2x f(x)+3$, with $f(1)=4$. Then $2f(2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The function $f:(-\infty,\infty)\to(-\infty,1)$, defined by $f(x)=\dfrac{2^x-2^{-x}}{2^x+2^{-x}}$, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (24 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
et $A(x,y,z)$ be a point in $xy$-plane, which is equidistant from three points $(0,3,2)$, $(2,0,3)$ and $(0,0,1)$. Let $B=(1,4,-1)$ and $C=(2,0,-2)$. Then among the statements (S1): $\triangle ABC$ is an isosceles right angled triangle, and (S2): the area of $\triangle ABC$ is $\dfrac{9\sqrt{2}}{2}$,





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $f(x)=\dfrac{2^x}{,2^x+\sqrt{2},},; x\in\mathbb{R}$, then $\displaystyle \sum_{k=1}^{81} f!\left(\dfrac{k}{82}\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of the squares of all the roots of the equation $x^2 + |2x - 3| - 4 = 0$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The relation $R={(x,y): x,y\in\mathbb{Z}\ \text{and}\ x+y\ \text{is even}}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $(a_n)$ be a sequence such that $a_0=0$, $a_1=\dfrac{1}{2}$ and $2a_{n+2}=5a_{n+1}-3a_n,; n=0,1,2,\ldots$. Then $\displaystyle \sum_{k=1}^{100} a_k$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\displaystyle \cos\left(\sin^{-1}\frac{3}{5}+\sin^{-1}\frac{5}{13}+\sin^{-1}\frac{33}{65}\right)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{96 x^2 \cos ^2 x}{\left(1+e^x\right)} \mathrm{d} x=\pi\left(\alpha \pi^2+\beta\right), \alpha, \beta \in \mathbb{Z}$, then $(\alpha+\beta)^2$ equals





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\mathrm{T}_{\mathrm{r}}$ be the $\mathrm{r}^{\text {th }}$ term of an A.P. If for some $\mathrm{m}, \mathrm{T}_{\mathrm{m}}=\frac{1}{25}, \mathrm{~T}_{25}=\frac{1}{20}$, and $20 \sum\limits_{\mathrm{r}=1}^{25} \mathrm{~T}_{\mathrm{r}}=13$, then $5 \mathrm{~m} \sum\limits_{\mathrm{r}=\mathrm{m}}^{2 \mathrm{~m}} \mathrm{~T}_{\mathrm{r}}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\binom{n}{r-1}=28$, $\binom{n}{r}=56$ and $\binom{n}{r+1}=70$. Let $A(4\cos t,,4\sin t)$, $B(2\sin t,,-2\cos t)$ and $C(3r-n,,r^{2}-n-1)$ be the vertices of a triangle $ABC$, where $t$ is a parameter. If $(3x-1)^{2}+(3y)^{2}=\alpha$ is the locus of the centroid of triangle $ABC$, then $\alpha$ equals





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Two numbers $k_{1}$ and $k_{2}$ are randomly chosen from the set of natural numbers. Then, the probability that the value of $i^{k_{1}}+i^{k_{2}}$ $(i=\sqrt{-1})$ is non-zero equals





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Three defective oranges are accidentally mixed with seven good ones and, on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If $x$ denotes the number of defective oranges, then the variance of $x$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $ABCD$ be a trapezium whose vertices lie on the parabola $y^{2}=4x$. Let the sides $AD$ and $BC$ of the trapezium be parallel to the $y$-axis. If the diagonal $AC$ is of length $\dfrac{25}{4}$ and it passes through the point $(1,0)$, then the area of $ABCD$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the image of the point $(4,4,3)$ in the line $\dfrac{x-1}{2}=\dfrac{y-2}{1}=\dfrac{z-1}{3}$ is $(\alpha,\beta,\gamma)$, then $\alpha+\beta+\gamma$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let, for some function $y=f(x)$, $\displaystyle \int_{0}^{x} t,f(t),dt = x^{2}f(x)$ for $x>0$ and $f(2)=3$. Then $f(6)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of all local minimum values of the function

$\mathrm{f}(x)=\left\{\begin{array}{lr} 1-2 x, & x<-1 \\ \frac{1}{3}(7+2|x|), & -1 \leq x \leq 2 \\ \frac{11}{18}(x-4)(x-5), & x>2 \end{array}\right.$






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of different $5$-digit numbers greater than $50000$ that can be formed using the digits $0,1,2,3,4,5,6,7$, such that the sum of their first and last digits is not more than $8$, is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the equation of the circle, which touches $x$-axis at the point $(a,0)$, $a>0$, and cuts off an intercept of length $b$ on $y$-axis be $x^{2}+y^{2}-\alpha x+\beta y+\gamma=0$. If the circle lies below $x$-axis, then the ordered pair $(2a,,b^{2})$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}\to\mathbb{R}$ be a function defined by $f(x)=(2+3a)x^{2}+\dfrac{a+2}{a-1}x+b$, $a\ne1$. If $f(x+y)=f(x)+f(y)+1-\dfrac{2}{7}xy$, then the value of $28\displaystyle\sum_{i=1}^{5}\lvert f(i)\rvert$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $O$ be the origin, the point $A$ be $z_1=\sqrt{3}+2\sqrt{2},i$, the point $B$ $(z_2)$ be such that $\sqrt{3},|z_2|=|z_1|$ and $\arg(z_2)=\arg(z_1)+\dfrac{\pi}{6}$. Then





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area (in sq. units) of the region ${(x,y): 0\le y\le 2|x|+1,; 0\le y\le x^{2}+1,; |x|\le 3}$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area of the region bounded by the curves $x(1+y^{2})=1$ and $y^{2}=2x$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Bag $B_1$ contains 6 white and 4 blue balls, Bag $B_2$ contains 4 white and 6 blue balls, and Bag $B_3$ contains 5 white and 5 blue balls. One of the bags is selected at random and a ball is drawn from it. If the ball is white, then the probability that the ball is drawn from Bag $B_2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}\to\mathbb{R}$ be a twice differentiable function such that $f(2)=1$. If $F(x)=x f(x)$ for all $x\in\mathbb{R}$, $\displaystyle\int_{0}^{2} x F''(x),dx=6$ and $\displaystyle\int_{0}^{2} x^{2} F''(x),dx=40$, then $F'(2)+\displaystyle\int_{0}^{2} F(x),dx$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the midpoint of a chord of the ellipse $\dfrac{x^{2}}{9}+\dfrac{y^{2}}{4}=1$ is $\left(\sqrt{2},,\dfrac{4}{3}\right)$, and the length of the chord is $\dfrac{2\sqrt{\alpha}}{3}$, then $\alpha$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The square of the distance of the point $\left(\dfrac{15}{7},,\dfrac{32}{7},,7\right)$ from the line $\dfrac{x+1}{3}=\dfrac{y+3}{5}=\dfrac{z+5}{7}$ in the direction of the vector $\hat{i}+4\hat{j}+7\hat{k}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Two equal sides of an isosceles triangle are along $-x+2y=4$ and $x+y=4$. If $m$ is the slope of its third side, then the sum of all possible distinct values of $m$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the coefficients of three consecutive terms $T_r, T_{r+1}$ and $T_{r+2}$ in the binomial expansion of $(a+b)^{12}$ be in a G.P. Let $p$ be the number of all possible values of $r$. Let $q$ be the sum of all rational terms in the binomial expansion of $(\sqrt{3}+\sqrt[3]{4})^{12}$. Then $p+q$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}-{0}\to(-\infty,1)$ be a polynomial of degree $2$, satisfying $f(x)f\left(\dfrac{1}{x}\right)=f(x)+f\left(\dfrac{1}{x}\right)$. If $f(K)=-2K$, then the sum of squares of all possible values of $K$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let S be the set of all the words that can be formed by arranging all the letters of the word GARDEN. From the set S, one word is selected at random. The probability that the selected word will NOT have vowels in alphabetical order is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If A and B are the points of intersection of the circle $x^2 + y^2 - 8x = 0$ and the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ and a point P moves on the line $2x - 3y + 4 = 0$, then the centroid of $\Delta PAB$ lies on the line :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\sum\limits_{r=1}^{13}\left\{\frac{1}{\sin \left(\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{r \pi}{6}\right)}\right\}=a \sqrt{3}+b, a, b \in Z$, then $a^2+b^2$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of $x^2 - (3 - 2i)x - (2i - 2) = 0$, $i = \sqrt{-1}$, then $\alpha \gamma + \beta \delta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
>Let $A, B, C$ be three points in xy-plane, whose position vector are given by $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $a \hat{i}+(1-a) \hat{j}$ respectively with respect to the origin O . If the distance of the point C from the line bisecting the angle between the vectors $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values of $a$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $f(x)=\displaystyle\int \frac{1}{x^{1/4}\left(1+x^{1/4}\right)},dx,; f(0)=-6$, then $f(1)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -2 \\ 0 & 1\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta>0$. If $\mathrm{B}=\mathrm{PAP}{ }^{\top}, \mathrm{C}=\mathrm{P}^{\top} \mathrm{B}^{10} \mathrm{P}$ and the sum of the diagonal elements of $C$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f$ be a real valued continuous function defined on the positive real axis such that $g(x)=\int\limits_0^x t f(t) d t$. If $g\left(x^3\right)=x^6+x^7$, then value of $\sum\limits_{r=1}^{15} f\left(r^3\right)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the values of $\lambda$ for which the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
and $\frac{x-\lambda}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ be $\lambda_1$ and $\lambda_2$. Then the radius of the circle passing through the
points $(0, 0), (\lambda_1, \lambda_2)$ and $(\lambda_2, \lambda_1)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
et $f:[0,3]\to A$ be defined by $,f(x)=2x^3-15x^2+36x+7,$ and $g:[0,\infty)\to B$ be defined by $,g(x)=\dfrac{x^{2025}}{x^{2025}+1}.$ If both the functions are onto and $S={x\in\mathbb{Z},:,x\in A\ \text{or}\ x\in B},$ then $n(S)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x)=x-1$ and $g(x)=e^x$ for $x\in\mathbb{R}$. If $\dfrac{dy}{dx}=e^{-2\sqrt{x}}g\big(f(f(x))\big)-\dfrac{y}{\sqrt{x}}, y(0)=0$, then $y(1)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
For positive integers $n$, if $4a_n=(n^2+5n+6)$ and $S_n=\displaystyle\sum_{k=1}^{n}\frac{1}{a_k},$ then the value of $50,S_{2025}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (28 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots \infty= \frac{\pi^4}{90} $,

$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \ldots \infty= \alpha $,

$ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \ldots \infty= \beta $,

then $ \frac{\alpha}{\beta} $ is equal to :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let a be the length of a side of a square OABC with O being the origin. Its side OA makes an acute angle $\alpha $ with the positive x-axis and the equations of its diagonals are $(\sqrt{3}+1)x+(\sqrt{3}-1)y=0$ and $(\sqrt{3}-1)x-(\sqrt{3}+1)y+8\sqrt{3}=0$. Then $a$2 is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
A line passing through the point $P(a, 0)$ makes an acute angle $\alpha$ with the positive x-axis. Let this line be rotated about the point $P$ through an angle $\dfrac{\alpha}{2}$ in the clockwise direction. If in the new position, the slope of the line is $2 - \sqrt{3}$ and its distance from the origin is $\dfrac{1}{\sqrt{2}}$, then the value of $3a^2 \tan^2 \alpha - 2\sqrt{3}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the ellipse $3x^2 + py^2 = 4$ pass through the centre $C$ of the circle $x^2 + y^2 - 2x - 4y - 11 = 0$ of radius $r$. Let $f_1, f_2$ be the focal distances of the point $C$ on the ellipse. Then $6f_1f_2 - r$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of the squares of the roots of $|x - 2|^2 + |x - 2| - 2 = 0$ and the squares of the roots of $x^2 - 2|x - 3| - 5 = 0$, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A = {\theta \in [0,2\pi] : 1 + 10,\mathrm{Re}\left(\dfrac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = 0}$. Then $\displaystyle \sum_{\theta \in A} \theta^2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Given below are two statements: Statement I: $\displaystyle \lim_{x \to 0} \left( \tan^{-1}x + \log_e \dfrac{\sqrt{1+x}}{1-x} - 2x \right) = \dfrac{2}{5}$ Statement II: $\displaystyle \lim_{x \to 1} \left( x^{\frac{1}{x-1}} \right) = \dfrac{1}{e^2}$ In the light of the above statements, choose the correct answer from the options given below:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The integral $\displaystyle \int_{-1}^{\tfrac{3}{2}} \left( |\pi^2 x \sin(\pi x)| \right) dx$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $ A = \begin{bmatrix} 2 & 2+p & 2+p+q \\ 4 & 6+2p & 8+3p+2q \\ 6 & 12+3p & 20+6p+3q \end{bmatrix} $.

If $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, $ m, n \in \mathbb{N} $, then $ m + n $ is equal to






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A={0,1,2,3,4,5}$. Let $R$ be a relation on $A$ defined by $(x,y)\in R$ iff $\max{x,y}\in{3,4}$. Then among the statements $(S_1):$ The number of elements in $R$ is $18$, $(S_2):$ The relation $R$ is symmetric but neither reflexive nor transitive, choose the correct option:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Suppose$ \displaystyle f(x)=\frac{(x^{2}+2-x),\tan x;\sqrt{\tan^{-1}!\left(\frac{x^{2}-x+1}{x}\right)}}{(7x^{2}+3x+1)^{3}}. $ Then the value of $f'(0)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x)$ be a positive function and $I_{1}=\int_{-\tfrac{1}{2}}^{1} 2x,f\left(2x(1-2x)\right),dx$ and $I_{2}=\int_{-1}^{2} f\left(x(1-x)\right),dx$. Then the value of $\dfrac{I_{2}}{I_{1}}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec a,\vec b,\vec c$ be three non-zero vectors such that $\vec b$ and $\vec c$ are non-collinear. If $\ \vec a+5\vec b\ $ is collinear with $\vec c$, and $\ \vec b+6\vec c\ $ is collinear with $\vec a$, and $\ \vec a+\alpha,\vec b+\beta,\vec c=\vec 0$, then $\alpha+\beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
There are 12 points in a plane, no three of which are in the same straight line, except 5 points which are collinear. Then the total number of triangles that can be formed with the vertices at any three of these 12 points is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $(5, \tfrac{a}{4})$ be the circumcenter of a triangle with vertices $A(a, -2)$, $B(a, 6)$ and $C\left(\tfrac{a}{4}, -2\right)$. Let $\alpha$ denote the circumradius, $\beta$ denote the area and $\gamma$ denote the perimeter of the triangle. Then $\alpha + \beta + \gamma$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $A$ and $B$ are two events such that $P(A)=0.7,\ P(B)=0.4$ and $P(A\cap \overline{B})=0.5$, where $\overline{B}$ denotes the complement of $B$, then $P!\left(B,\middle|,(A\cup \overline{B})\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\alpha,\ -\tfrac{\pi}{2} < \alpha < \tfrac{\pi}{2}$ is the solution of $4\cos\theta + 5\sin\theta = 1$, then the value of $\tan\alpha$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec a=\hat i+2\hat j+\hat k$ and $\vec b=2\hat i+\hat j-\hat k$. Let $\vec c$ be a unit vector in the plane of the vectors $\vec a$ and $\vec b$ and be perpendicular to $\vec a$. Then such a vector $\vec c$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If in a G.P. of $64$ terms, the sum of all the terms is $7$ times the sum of the odd terms of the G.P., then the common ratio of the G.P. is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the function $f(x)=\dfrac{x}{3}+\dfrac{3}{x}+3,\ x\ne0$ be strictly increasing in $(-\infty,\alpha_1)\cup(\alpha_2,\infty)$ and strictly decreasing in $(\alpha_3,\alpha_4)\cup(\alpha_4,\alpha_5)$. Then $\displaystyle \sum_{i=1}^{5}\alpha_i^{2}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
A fair die is thrown until $2$ appears. Then, the probability that $2$ appears in an even number of throws is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of integral terms in the expansion of $\left(5^{\tfrac{1}{2}}+7^{\tfrac{1}{8}}\right)^{1016}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
In an A.P., the sixth term $a_6 = 2$. If the product $a_1 a_4 a_9$ is the greatest, then the common difference of the A.P. is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let α be a solution of $x^2 + x + 1 = 0$, and for some a and b in

$R, \begin{bmatrix} 4 & a & b \end{bmatrix} \begin{bmatrix} 1 & 16 & 13 \\ -1 & -1 & 2 \\ -2 & -14 & -8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$. If $\frac{4}{\alpha^4} + \frac{m}{\alpha^a} + \frac{n}{\alpha^b} = 3$, then m + n is equal to _______






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (8 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\text { Let } A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{array}\right] \text { and }|2 \mathrm{~A}|^3=2^{21} \text { where } \alpha, \beta \in Z \text {, Then a value of } \alpha \text { is }$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $R$ be a relation on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b) R (c,d)$ if and only if $ad - bc$ is divisible by $5$. Then $R$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $f(x)=\left\{\begin{array}{cc}2+2 x, & -1 \leq x < 0 \\ 1-\frac{x}{3}, & 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x, & 0 < x \leq 1\end{array}\right.\right.$, then range of $(f o g)(x)$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $O$ be the origin and the position vectors of $A$ and $B$ be $\vec{A} = 2\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{B} = 2\hat{i} + 4\hat{j} + 4\hat{k}$ respectively. If the internal bisector of $\angle AOB$ meets the line $AB$ at $C$, then the length of $OC$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
In a $\triangle ABC$, suppose $y = x$ is the equation of the bisector of the angle $B$ and the equation of the side $AC$ is $2x - y = 2$. If $2AB = BC$ and the points $A$ and $B$ are respectively $(4,6)$ and $(\alpha, \beta)$, then $\alpha + 2\beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if $y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$, and $\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\mathrm{A}$ be a square matrix such that $\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$. Then $\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $z = \dfrac{1}{2} - 2i$ is such that $|z + 1| = \alpha z + \beta (1 + i)$, $i = \sqrt{-1}$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha + \beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider the function $f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$ defined by $f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$. Consider the statements

(I) The curve $y=f(x)$ intersects the $x$-axis exactly at one point.

(II) The curve $y=f(x)$ intersects the $x$-axis at $x=\cos \frac{\pi}{12}$






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $P Q R$ be a triangle with $R(-1,4,2)$. Suppose $M(2,1,2)$ is the mid point of $\mathrm{PQ}$. The distance of the centroid of $\triangle \mathrm{PQR}$ from the point of intersection of the lines $\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$ and $\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\mathop {\lim }\limits_{x \to {\pi \over 2}} \left( {{1 \over {{{\left( {x - {\pi \over 2}} \right)}^2}}}\int\limits_{{x^3}}^{{{\left( {{\pi \over 2}} \right)}^3}} {\cos \left( {{t^{{1 \over 3}}}} \right)dt} } \right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A function $y=f(x)$ satisfies $f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$ with condition $f(0)=0$. Then, $f\left(\frac{\pi}{2}\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\dfrac{x^2\cos x}{1+x^2}+\dfrac{1+\sin^2 x}{1+e^{\sin 2x}}\right)dx = \dfrac{\pi}{4}(\pi+a)-2$, then the value of $a$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Number of ways of arranging 8 identical books into 4 identical shelves where any number of shelves may remain empty is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \int \frac{\sin^{3/2}x+\cos^{3/2}x}{\sqrt{\sin^2 x,\cos^2 x},\sin(x-\theta)},dx = A\sqrt{\cos\theta,\tan x-\sin\theta}+B\sqrt{\cos\theta-\sin\theta,\cot x}+C,$ where $C$ is the integration constant, then $AB$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A$ be the point of intersection of the lines $3x+2y=14$ and $5x-y=6$, and $B$ be the point of intersection of the lines $4x+3y=8$ and $6x+y=5$. The distance of the point $P(5,-2)$ from the line $AB$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The distance of the point $(2,3)$ from the line $2x-3y+28=0$, measured parallel to the line $\sqrt{3},x-y+1=0$, is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let a unit vector $\hat{\mathbf{u}}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$ make angles $\dfrac{\pi}{2},\ \dfrac{\pi}{3}$ and $\dfrac{2\pi}{3}$ with the vectors $\dfrac{1}{\sqrt{2}}\mathbf{i}+\dfrac{1}{\sqrt{2}}\mathbf{k},\ \dfrac{1}{\sqrt{2}}\mathbf{j}+\dfrac{1}{\sqrt{2}}\mathbf{k},\ \dfrac{1}{\sqrt{2}}\mathbf{i}+\dfrac{1}{\sqrt{2}}\mathbf{j}$ respectively. If $\vec{\mathbf{v}}=\dfrac{1}{\sqrt{2}}\mathbf{i}+\dfrac{1}{\sqrt{2}}\mathbf{j}+\dfrac{1}{\sqrt{2}}\mathbf{k}$, then $|\hat{\mathbf{u}}-\vec{\mathbf{v}}|^{2}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The function $f(x)=\frac{x}{x^2-6 x-16}, x \in \mathbb{R}-\{-2,8\}$





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $R$ is the smallest equivalence relation on the set ${1,2,3,4}$ such that ${(1,2),(1,3)}\subset R$, then the number of elements in $R$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The mean and variance of five observations are $\dfrac{24}{5}$ and $\dfrac{194}{25}$ respectively. If the mean of the first four observations is $\dfrac{7}{2}$, then the variance of the first four observations is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $P(3,2,3)$, $Q(4,6,2)$ and $R(7,3,2)$ be the vertices of $\triangle PQR$. The angle $\angle QPR$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $y=\log_e!\left(\dfrac{1-x^2}{1+x^2}\right)$, with $-1




Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\log_e a,;\log_e b,;\log_e c$ are in an A.P. and $\log_e a-\log_e(2b),;\log_e(2b)-\log_e(3c),;\log_e(3c)-\log_e a$ are also in an A.P., then $a:b:c$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\sin\left(\dfrac{y}{x}\right)=\log_e|x|+\dfrac{\alpha}{x}$ is a solution of the differential equation $x\cos\left(\dfrac{y}{x}\right)\dfrac{dy}{dx}=y\cos\left(\dfrac{y}{x}\right)+x$ with $y(1)=\dfrac{\pi}{3}$, then $\alpha^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
An integer is chosen at random from the integers $1,2,3,\dots,50$. The probability that the chosen integer is a multiple of at least one of $4,6,$ and $7$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\overrightarrow{OA}=\vec a,\ \overrightarrow{OB}=12\vec a+4\vec b$ and $\overrightarrow{OC}=\vec b$, where $O$ is the origin. If $S$ is the parallelogram with adjacent sides $OA$ and $OC$, then $\dfrac{\text{area of quadrilateral }OABC}{\text{area of }S}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The function $f(x)=2x+3x^{\frac{1}{3}},; x\in\mathbb{R}$ has:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If each term of a geometric progression $a_1,a_2,a_3,\dots$ with $a_1=\dfrac{1}{8}$ and $a_2\neq a_1$ is the arithmetic mean of the next two terms, and $S_n=a_1+a_2+\dots+a_n$, then $S_{20}-S_{18}$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $r$ and $\theta$ respectively be the modulus and amplitude of the complex number $z = 2 - i\left(2\tan\dfrac{5\pi}{8}\right)$, then $(r, \theta)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of the solutions $x \in \mathbb{R}$ of the equation $\dfrac{3\cos 2x + \cos^3 2x}{\cos^6 x - \sin^6 x} = x^3 - x^2 + 6$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $x = \dfrac{m}{n}$ $(m, n$ are co-prime natural numbers$)$ be a solution of the equation $\cos(2\sin^{-1}x) = \dfrac{1}{9}$ and let $\alpha, \beta$ $(\alpha > \beta)$ be the roots of the equation $mx^2 - nx - m + n = 0$. Then the point $(\alpha, \beta)$ lies on the line:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$. The sum of the prime factors of $\left|P^{-1} A P-2 I\right|$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (29 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\mathrm{A}=\left[\begin{array}{cc}\alpha & -1 \\ 6 & \beta\end{array}\right], \alpha>0$, such that $\operatorname{det}(\mathrm{A})=0$ and $\alpha+\beta=1$. If I denotes $2 \times 2$ identity matrix, then the matrix $(I+A)^8$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the vertices $Q$ and $R$ of the triangle $PQR$ lie on the line $\dfrac{x + 3}{5} = \dfrac{y - 1}{2} = \dfrac{z + 4}{3}$, $QR = 5$ and the coordinates of the point $P$ be $(0, 2, 3)$. If the area of the triangle $PQR$ is $\dfrac{m}{n}$, then:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $a \in R$ and $A$ be a matrix of order $3 \times 3$ such that $\operatorname{det}(A)=-4$ and $A+I=\left[\begin{array}{lll}1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2\end{array}\right]$, where $I$ is the identity matrix of order $3 \times 3$. If $\operatorname{det}((a+1) \operatorname{adj}((a-1) A))$ is $2^{\mathrm{m}} 3^{\mathrm{n}}, \mathrm{m}$, $\mathrm{n} \in\{0,1,2, \ldots, 20\}$, then $\mathrm{m}+\mathrm{n}$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\theta \in[-2 \pi, 2 \pi]$, then the number of solutions of $2 \sqrt{2} \cos ^2 \theta+(2-\sqrt{6}) \cos \theta-\sqrt{3}=0$, is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $S$ and $S'$ are the foci of the ellipse $\dfrac{x^2}{18} + \dfrac{y^2}{9} = 1$ and $P$ be a point on the ellipse, then $\min(SP \cdot S'P) + \max(SP \cdot S'P)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the focal chord $PQ$ of the parabola $y^2 = 4x$ make an angle of $60^\circ$ with the positive $x$-axis, where $P$ lies in the first quadrant. If the circle, whose one diameter is $PS$, $S$ being the focus of the parabola, touches the $y$-axis at the point $(0, \alpha)$, then $5\alpha^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where $a > 0$, attains its local maximum and local minimum values at $p$ and $q$ respectively, such that $p^2 = q$, then $f(3)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $ABCD$ be a tetrahedron such that the edges $AB$, $AC$ and $AD$ are mutually perpendicular. Let the areas of the triangles $ABC$, $ACD$ and $ADB$ be $5$, $6$ and $7$ square units respectively. Then the area (in square units) of the $\triangle BCD$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $z$ be a complex number such that $|z| = 1$. If $\dfrac{2 + k\bar{z}}{k + z} = kz$, $k \in \mathbb{R}$, then the maximum distance of $k + ik^2$ from the circle $|z - (1 + 2i)| = 1$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let one focus of the hyperbola $\textbf{H}: \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x = \dfrac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of $\textbf{H}$, then $9(e^2 + l)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The largest $n \in \mathbb{N}$ such that $3^n$ divides $50!$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $P_n = \alpha^n + \beta^n$, $n \in \mathbb{N}$. If $P_{10} = 123$, $P_9 = 76$, $P_8 = 47$ and $P_1 = 1$, then the quadratic equation having roots $\dfrac{1}{\alpha}$ and $\dfrac{1}{\beta}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\vec{a}$ is a nonzero vector such that its projections on the vectors $2\hat{i} - \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} - 2\hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\vec{a}$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the system of linear equations

$ \begin{aligned} & 3 x+y+\beta z=3 \\ & 2 x+\alpha y-z=-3 \\ & x+2 y+z=4 \end{aligned} $

has infinitely many solutions, then the value of $22 \beta-9 \alpha$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $(\sin x \cos y)(f(2 x+2 y)-f(2 x-2 y))=(\cos x \sin y)(f(2 x+2 y)+f(2 x-2 y))$, for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=\frac{1}{2}$, then the value of $24 f^{\prime \prime}\left(\frac{5 \pi}{3}\right)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
For $\alpha, \beta, \gamma \in \mathbf{R}$, if $\lim _\limits{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3$, then $\beta+\gamma-\alpha$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $x=x(y)$ be the solution of the differential equation $2(y+2)\log_e(y+2)\,dx+\big(x+4-2\log_e(y+2)\big)\,dy=0,\quad y>-1$ with $x\big(e^{4}-2\big)=1$. Then $x\big(e^{9}-2\big)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of sequences of ten terms, whose terms are either $0$, $1$ or $2$, that contain exactly five $1$’s and exactly three $2$’s, is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \int_{0}^{1} \frac{1}{(5+2x-2x^2)\,(1+e^{\,2-4x})}\,dx=\frac{1}{\alpha}\log_e\!\left(\frac{\alpha+1}{\beta}\right),\ \alpha,\beta>0,$ then $\alpha^4-\beta^4$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The term independent of $x$ in the expansion of $\left(\frac{(x+1)}{\left(x^{2 / 3}+1-x^{1 / 3}\right)}-\frac{(x-1)}{\left(x-x^{1 / 2}\right)}\right)^{10}, x>1$, is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The total number of three-digit numbers, divisible by 3, which can be formed using the digits , if repetition of digits is allowed, is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $a_1, a_2, a_3, \ldots$ be in an A.P. such that $ \displaystyle \sum_{k=1}^{12} 2a_{2k-1} = -\dfrac{72}{5}a_1, \quad a_1 \ne 0.$ If $ \displaystyle \sum_{k=1}^{n} a_k = 0, $ then $n$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively and $\overrightarrow{(AB-BC)}+\overrightarrow{(AD-DC)}=k\,\overrightarrow{FE}$, then $k$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2023 (15 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:[1, \infty) \rightarrow[2, \infty)$ be a differentiable function. If $10 \int_1^1 f(\mathrm{t}) \mathrm{dt}=5 x f(x)-x^5-9$ for all $x \geqslant 1$, then the value of $f(3)$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the mean and the variance of $6,4, a, 8, b, 12,10,13$ are 9 and 9.25 respectively, then $a+b+a b$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the point P of the focal chord PQ of the parabola $y^2=16 x$ be $(1,-4)$. If the focus of the parabola divides the chord $P Q$ in the ratio $m: n, \operatorname{gcd}(m, n)=1$, then $m^2+n^2$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the system of equations

$ \begin{aligned} & 2 x+\lambda y+3 z=5 \\ & 3 x+2 y-z=7 \\ & 4 x+5 y+\mu z=9 \end{aligned} $

has infinitely many solutions, then $\left(\lambda^2+\mu^2\right)$ is equal to :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A$ be a $3 \times 3$ real matrix such that $A^2(A-2 I)-4(A-I)=O$, where $I$ and $O$ are the identity and null matrices, respectively. If $A^5=\alpha A^2+\beta A+\gamma I$, where $\alpha, \beta$, and $\gamma$ are real constants, then $\alpha+\beta+\gamma$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \lim_{x \to 0} \frac{\cos(2x) + a\cos(4x) - b}{x^4}$ is finite, then $(a + b)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the image of the point $P(1, 0, 3)$ in the line joining the points $A(4, 7, 1)$ and $B(3, 5, 3)$ is $Q(\alpha, \beta, \gamma)$, then $\alpha + \beta + \gamma$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\theta \in \left[-\dfrac{7\pi}{6}, \dfrac{4\pi}{3}\right]$, then the number of solutions of $\sqrt{3}\csc^2\theta - 2(\sqrt{3} - 1)\csc\theta - 4 = 0$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A = {1, 2, 3, \ldots, 100}$ and $R$ be a relation on $A$ such that $R = {(a, b) : a = 2b + 1}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), \ldots, (a_k, a_{k+1})$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer $k$, for which such a sequence exists, is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the domain of the function $f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}}$ is $(a, b)$, then $(1 + a)^2 + b^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the domain of the function $f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}}$ is $(a, b)$, then $(1 + a)^2 + b^2$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The line $L_1$ is parallel to the vector $\vec{a} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through the point $(7, 6, 2)$, and the line $L_2$ is parallel to the vector $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ and passes through the point $(5, 3, 4)$. The shortest distance between the lines $L_1$ and $L_2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of terms of an A.P. is even. The sum of all the odd terms is $24$, the sum of all the even terms is $30$, and the last term exceeds the first by $\dfrac{21}{2}$. Then the number of terms which are integers in the A.P. is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $(a, b)$ be the point of intersection of the curve $x^2 = 2y$ and the straight line $y - 2x - 6 = 0$ in the second quadrant. Then the integral $I = \int_a^b \dfrac{9x^2}{1 + 5x^4},dx$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the length of the minor axis of an ellipse is equal to one-fourth of the distance between the foci, then the eccentricity of the ellipse is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \sum_{r=0}^{10} \left(\dfrac{10^{r+1}-1}{10^r}\right) , {}^{11}C_{r+1} = \dfrac{\alpha^{11} - 11^{11}}{10^{10}}$, then $\alpha$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
$\displaystyle 4 \int_0^1 \left(\dfrac{1}{\sqrt{3 + x^2} + \sqrt{1 + x^2}}\right) dx - 3 \log_e(\sqrt{3})$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k}$, and a vector $\vec{c}$ be such that $(\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k}$ and $\vec{a} \cdot \vec{c} = 3$. If $\vec{b} \times \vec{c} = \vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
$ \text { Given three indentical bags each containing } 10 \text { balls, whose colours are as follows : } $

$ \begin{array}{lccc} & \text { Red } & \text { Blue } & \text { Green } \\ \text { Bag I } & 3 & 2 & 5 \\ \text { Bag II } & 4 & 3 & 3 \\ \text { Bag III } & 5 & 1 & 4 \end{array} $

A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from bag I is p and if the ball is Green, the probability that it is from bag III is $q$, then the value of $\left(\frac{1}{p}+\frac{1}{q}\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (2 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the domain of the function $f(x) = \log_e\left(\dfrac{2x - 3}{5 + 4x}\right) + \sin^{-1}\left(\dfrac{4 + 3x}{2 - x}\right)$ is $[\alpha, \beta]$, then $\alpha^2 + 4\beta$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $a_1, a_2, a_3, \ldots$ be a G.P. of increasing positive numbers. If $a_3 a_5 = 729$ and $a_2 + a_4 = \dfrac{111}{4}$, then $24(a_1 + a_2 + a_3)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum $1 + 3 + 11 + 25 + 45 + 71 + \ldots$ up to $20$ terms is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$ \text { The number of solutions of the equation } 2 x+3 \tan x=\pi, x \in[-2 \pi, 2 \pi]-\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}\right\} \text { is: } $





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area of the region, inside the circle $ (x - 2\sqrt{3})^2 + y^2 = 12 $ and outside the parabola $ y^2 = 2\sqrt{3}x $, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\mathrm{A}=\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by $x \mathrm{R} y$ if and only if $0 \leq x^2+2 y \leq 4$. Let $l$ be the number of elements in R and $m$ be the minimum number of elements required to be added in R to make it a reflexive relation. Then $l+m$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the foci of a hyperbola be $(1,14)$ and $(1,-12)$. If it passes through the point $(1,6)$, then the length of its latus-rectum is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The radius of the smallest circle which touches the parabolas $y=x^2+2$ and $x=y^2+2$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $|z|=1$ with $\arg(z_1)=-\frac{\pi}{4}$, $\arg(z_2)=0$ and $\arg(z_3)=\frac{\pi}{4}$. If $\left|\,z_1\overline{z_2}+z_2\overline{z_3}+z_3\overline{z_1}\,\right|^2=\alpha+\beta\sqrt{2}$, $\alpha,\beta\in\mathbb{Z}$, then the value of $\alpha^2+\beta^2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x) = \int x^3 \sqrt{3 - x^2} , dx.$ If $5f(\sqrt{2}) = -4$, then $f(1)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $L_1:\ \dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$ and $L_2:\ \dfrac{x-2}{3}=\dfrac{y-4}{4}=\dfrac{z-5}{5}$ be two lines. Which of the following points lies on the line of the shortest distance between $L_1$ and $L_2$?





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the domain of the function $f(x) = \log_2 \log_4 \log_6 (3 + 4x - x^2)$ be $(a, b)$. If $\int_0^{b - a} [x^2] , dx = p - \sqrt{q - \sqrt{r}}, ; p, q, r \in \mathbb{N}, ; \gcd(p, q, r) = 1$, where $[,]$ is the greatest integer function, then $p + q + r$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A=\{1,2,3, \ldots, 10\}$ and $B=\left\{\frac{m}{n}: m, n \in A, m< n\right.$ and $\left.\operatorname{gcd}(m, n)=1\right\}$. Then $n(B)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\alpha$ and $\beta$ be the roots of $x^2 + \sqrt{3}x - 16 = 0$, and $\gamma$ and $\delta$ be the roots of $x^2 + 3x - 1 = 0$. If $P_n = \alpha^n + \beta^n$ and $Q_n = \gamma^n + \delta^n$, then $\dfrac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} + \dfrac{Q_{25} - Q_{23}}{Q_{24}}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the triangle PQR be the image of the triangle with vertices $(1,3),(3,1)$ and $(2,4)$ in the line $x+2 y=2$. If the centroid of $\triangle \mathrm{PQR}$ is the point $(\alpha, \beta)$, then $15(\alpha-\beta)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let a line passing through the point $(4,1,0)$ intersect the line $\mathrm{L}_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ at the point $A(\alpha, \beta, \gamma)$ and the line $\mathrm{L}_2: x-6=y=-z+4$ at the point $B(a, b, c)$. Then $\left|\begin{array}{lll}1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c\end{array}\right|$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The product of all solutions of the equation $e^{5(\log_e x)^2+3}=x^8,\ x>0$, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\quad f(x)= \begin{cases}(1+a x)^{1 / x} & , x<0 \\ 1+b, & x=0 \\ \frac{(x+4)^{1 / 2}-2}{(x+c)^{1 / 3}-2}, & x>0\end{cases}$ be continuous at $x=0$. Then $e^a b c$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
From all the English alphabets, five letters are chosen and arranged in alphabetical order. The total number of ways in which the middle letter is M is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A line passing through the point $P(\sqrt{5}, \sqrt{5})$ intersects the ellipse $\dfrac{x^2}{36} + \dfrac{y^2}{25} = 1$ at $A$ and $B$ such that $(PA) \cdot (PB)$ is maximum. Then $5(PA^2 + PB^2)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A circle $C$ of radius $2$ lies in the second quadrant and touches both the coordinate axes. Let $r$ be the radius of a circle that has centre at the point $(2,5)$ and intersects the circle $C$ at exactly two points. If the set of all possible values of $r$ is the interval $(\alpha,\beta)$, then $3\beta-2\alpha$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Line $L_1$ passes through the point $(1, 2, 3)$ and is parallel to the $z$-axis. Line $L_2$ passes through the point $(\lambda, 5, 6)$ and is parallel to the $y$-axis. Let for $\lambda = \lambda_1, \lambda_2,$ $\lambda_2 < \lambda_1,$ the shortest distance between the two lines be $3$. Then the square of the distance of the point $(\lambda_1, \lambda_2, 7)$ from the line $L_1$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $x=x(y)$ be the solution of the differential equation $y^2\,dx+\left(x-\dfrac{1}{y}\right)dy=0$. If $x(1)=1$, then $x\!\left(\dfrac{1}{2}\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $g$ be a differentiable function such that $\displaystyle \int_0^x g(t),dt = x - \int_0^x t g(t),dt,; x \ge 0$ and let $y = y(x)$ satisfy the differential equation $\dfrac{dy}{dx} - y \tan x = 2(x + 1)\sec x, g(x),; x \in \left[0, \dfrac{\pi}{2}\right).$ If $y(0) = 0$, then $y\left(\dfrac{\pi}{3}\right)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A coin is tossed three times. Let X denote the number of times a tail follows a head. If \mu and \sigma^2 denote the mean and variance of X, then the value of 64(\mu+\sigma^2) is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of all rational terms in the expansion of $(2 + \sqrt{3})^8$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x)$ be a real differentiable function such that $f(0)=1$ and $f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y)$ for all $x, y \in \mathbf{R}$. Then $\sum_\limits{n=1}^{100} \log _e f(n)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \sum_{r=1}^{9} \left(\dfrac{r + 3}{2^r}\right) \cdot {^9C_r} = \alpha \left(\dfrac{3}{2}\right)^9 - \beta,; \alpha, \beta \in \mathbb{N}$, then $(\alpha + \beta)^2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is $\dfrac{m}{n}$, where $\gcd(m,n)=1$, then $m+n$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $z \in \mathbb{C}$ be such that $\dfrac{z^2+3i}{z-2+i}=2+3i$. Then the sum of all possible values of $z^2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $a_1,a_2,a_3,\ldots$ be a G.P. of increasing positive terms. If $a_1a_5=28$ and $a_2+a_4=29$, then $a_6$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$ \text { If } y(x)=\left|\begin{array}{ccc} \sin x & \cos x & \sin x+\cos x+1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{array}\right|, x \in \mathbb{R} \text {, then } \frac{d^2 y}{d x^2}+y \text { is equal to } $





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of non-empty equivalence relations on the set {1,2,3} is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A line passes through the origin and makes equal angles with the positive coordinate axes. It intersects the lines $L_1: 2x+y+6=0$ and $L_2: 4x+2y-p=0,; p>0$ at the points $A$ and $B$, respectively. If $|AB|=\dfrac{9}{\sqrt{2}}$ and the foot of the perpendicular from the point $A$ on the line $L_2$ is $M$, then $\dfrac{AM}{BM}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let for $f(x)=7 \tan ^8 x+7 \tan ^6 x-3 \tan ^4 x-3 \tan ^2 x, \quad \mathrm{I}_1=\int_0^{\pi / 4} f(x) \mathrm{d} x$ and $\mathrm{I}_2=\int_0^{\pi / 4} x f(x) \mathrm{d} x$. Then $7 \mathrm{I}_1+12 \mathrm{I}_2$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A$ be a matrix of order $3\times 3$ and $|A|=5$. If $\left|,2,\operatorname{adj}\left(3A,\operatorname{adj}(2A)\right)\right|=2^{\alpha}\cdot 3^{\beta}\cdot 5^{\gamma}$, $\alpha,\beta,\gamma\in\mathbb{N}$, then $\alpha+\beta+\gamma$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the parabola $y=x^2+px-3$ meet the coordinate axes at the points $P,Q,R$. If the circle $C$ with centre at $(-1,-1)$ passes through the points $P,Q$ and $R$, then the area of $\triangle PQR$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area of the region ${(x,y): |x-y|\le y \le 4\sqrt{x}}$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16\!\left((\sec^{-1}x)^2+(\csc^{-1}x)^2\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Line $L_1$ of slope $2$ and line $L_2$ of slope $\dfrac{1}{2}$ intersect at the origin $O$. In the first quadrant, $P_1,P_2,\ldots,P_{12}$ are $12$ points on line $L_1$ and $Q_1,Q_2,\ldots,Q_{9}$ are $9$ points on line $L_2$. Then the total number of triangles that can be formed having vertices at three of the $22$ points $O,P_1,P_2,\ldots,P_{12},Q_1,Q_2,\ldots,Q_{9}$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=4 \mathrm{a}$ and $f$ satisfies $f^{\prime \prime}(x)-3 \mathrm{a} f^{\prime}(x)-f(x)=0, \mathrm{a}>0$, then the area of the region $\mathrm{R}=\{(x, y) \mid 0 \leq y \leq f(a x), 0 \leq x \leq 2\}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Each of the angles $\beta$ and $\gamma$ that a given line makes with the positive $y$- and $z$-axes, respectively, is half of the angle that this line makes with the positive $x$-axis. Then the sum of all possible values of the angle $\beta$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\sum_\limits{r=1}^n T_r=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}$, then $\lim _\limits{n \rightarrow \infty} \sum_\limits{r=1}^n\left(\frac{1}{T_r}\right)$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $z_1,z_2,z_3\in\mathbb{C}$ are the vertices of an equilateral triangle whose centroid is $z_0$, then $\displaystyle \sum_{k=1}^{3}(z_k-z_0)^2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let \alpha_\theta and \beta_\theta be the distinct roots of $2x^2+(\cos\theta)x-1=0$, $\theta\in(0,2\pi)$. If $m$ and $M$ are the minimum and the maximum values of $\alpha_\theta^{4}+\beta_\theta^{4}$, then $16(M+m)$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $C$ be the circle of minimum area enclosing the ellipse $E:\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ with eccentricity $\dfrac12$ and foci $(\pm 2,0)$. Let $PQR$ be a variable triangle, whose vertex $P$ is on the circle $C$ and the side $QR$ of length $2a$ is parallel to the major axis of $E$ and contains the point of intersection of $E$ with the negative $y$-axis. Then the maximum area of the triangle $PQR$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let a line pass through two distinct points $P(-2,-1,3)$ and $Q$, and be parallel to the vector $3\hat i+2\hat j+2\hat k$. If the distance of the point $Q$ from the point $R(1,3,3)$ is $5$, then the square of the area of $\triangle PQR$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The shortest distance between the curves $y^2=8x$ and $x^2+y^2+12y+35=0$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the system of linear equations :

$\begin{aligned} & x+y+2 z=6 \\ & 2 x+3 y+\mathrm{az}=\mathrm{a}+1 \\ & -x-3 y+\mathrm{b} z=2 \mathrm{~b} \end{aligned}$

where $a, b \in \mathbf{R}$, has infinitely many solutions, then $7 a+3 b$ is equal to :






Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider the lines $x(3\lambda+1)+y(7\lambda+2)=17\lambda+5$, $\lambda$ being a parameter, all passing through a point $P$. One of these lines (say $L$) is farthest from the origin. If the distance of $L$ from the point $(3,6)$ is $d$, then the value of $d^2$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum of all values of $\theta \in [0,2\pi]$ satisfying $2\sin^2\theta=\cos 2\theta$ and $2\cos^2\theta=3\sin\theta$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $y=y(x)$ be the solution of the differential equation $\dfrac{dy}{dx}+3\tan^2 x,y+3y=\sec^2 x$, $y(0)=\dfrac{1}{3}+e^3$. Then $y!\left(\dfrac{\pi}{4}\right)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of $\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\ & \alpha u+\beta v=18, \\\\ & \gamma u+\delta v=20, \end{aligned}$ then $\mathrm{u+v}$ equals :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f$ be a function such that $f(x)+3f\left(\dfrac{24}{x}\right)=4x,; x\ne0$. Then $f(3)+f(8)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $A$ and $B$ are two events such that $P(A \cap B)=0.1$, and $P(A \mid B)$ and $P(B \mid A)$ are the roots of the equation $12 x^2-7 x+1=0$, then the value of $\frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})}$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the equation $x(x+2)(12-k)=2$ have equal roots. Then the distance of the point $\left(k,\dfrac{k}{2}\right)$ from the line $3x+4y+5=0$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The perpendicular distance of the line $\dfrac{x-1}{2}=\dfrac{y+2}{-1}=\dfrac{z+3}{2}$ from the point $P(2,-10,1)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A={-2,-1,0,1,2,3}$. Let $R$ be a relation on $A$ defined by $xRy$ iff $y=\max{x,1}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in $R$ to make it reflexive and symmetric relations, respectively. Then $l+m+n$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $x=f(y)$ is the solution of the differential equation $(1+y^{2})+\big(x-2e^{\tan^{-1}y}\big)\dfrac{dy}{dx}=0,\ y\in\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)$ with $f(0)=1$, then $f\!\left(\dfrac{1}{\sqrt{3}}\right)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the mean and variance of five observations $x_1=1,\ x_2=3,\ x_3=a,\ x_4=7,\ x_5=b,\ a>b$ be $5$ and $10$ respectively. Then the variance of the observations $n+x_n,\ n=1,2,\ldots,5$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
For a $3\times3$ matrix $M$, let $\operatorname{trace}(M)$ denote the sum of all the diagonal elements of $M$. Let $A$ be a $3\times3$ matrix such that $|A|=\dfrac{1}{2}$ and $\operatorname{trace}(A)=3$. If $B=\operatorname{adj}(\operatorname{adj}(2A))$, then the value of $|B|+\operatorname{trace}(B)$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The integral $\displaystyle \int_{0}^{\pi}\frac{8x,dx}{4\cos^{2}x+\sin^{2}x}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \int e^{x}\!\left(\frac{x\sin^{-1}x}{\sqrt{1-x^{2}}}+\frac{\sin^{-1}x}{(1-x^{2})^{3/2}}+\frac{x}{1-x^{2}}\right)\!dx=g(x)+C$, where $C$ is the constant of integration, then $g\!\left(\dfrac{1}{2}\right)$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The distance of the point $(7,10,11)$ from the line $\dfrac{x-4}{1}=\dfrac{y-4}{0}=\dfrac{z-2}{3}$ along the line $\dfrac{x-9}{2}=\dfrac{y-13}{3}=\dfrac{z-17}{6}$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\vec{a}$ and $\vec{b}$ be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda \vec{a}+2 \vec{b}$ and $3 \vec{a}-\lambda \vec{b}$ are perpendicular to each other, then the number of values of $\lambda$ in $[-1,3]$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the probability that the random variable $X$ takes the value $x$ is given by $P(X=x)=k(x+1)3^{-x},\ x=0,1,2,3,\ldots$ where $k$ is a constant, then $P(X\ge 3)$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The area of the region enclosed by the curves $y=x^2-4 x+4$ and $y^2=16-8 x$ is :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of solutions of the equation $(4-\sqrt{3})\sin x-2\sqrt{3}\cos^2 x=-\dfrac{4}{1+\sqrt{3}},\ x\in[-2\pi,\tfrac{5\pi}{2}]$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
In a group of 3 girls and 4 boys, there are two boys $B_1$ and $B_2$. The number of ways in which these girls and boys can stand in a queue such that all the girls stand together, all the boys stand together, but $B_1$ and $B_2$ are not adjacent to each other, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the domain of the function $f(x)=\log_{7}!\big(1-\log_{4}(x^{2}-9x+18)\big)$ is $(\alpha,\beta)\cup(\gamma,\delta)$, then $\alpha+\beta+\gamma+\delta$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \lim_{x\to\infty}\left(\frac{e}{1-e}\left(\frac{1}{e}-\frac{x}{1+x}\right)\right)^{x}=\alpha$, then the value of $\displaystyle \frac{\log_e \alpha}{1+\log_e \alpha}$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=\left|,|x+2|-2|x|,\right|$. If $m$ is the number of points of local minima and $n$ is the number of points of local maxima of $f$, then $m+n$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x)=\displaystyle \int_{0}^{e^{x^{2}}}\frac{t^{2}-8t+15}{e^{t}}\,dt,\ x\in\mathbb{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The sum $1+\dfrac{1+3}{2!}+\dfrac{1+3+5}{3!}+\dfrac{1+3+5+7}{4!}+\cdots$ up to $\infty$ terms is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A=\{1,2,3,4\}$ and $B=\{1,4,9,16\}$. Then the number of many-one functions $f:A\to B$ such that $1\in f(A)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the four distinct points $(4,6)$, $(-1,5)$, $(0,0)$ and $(k,3k)$ lie on a circle of radius $r$, then $10k+r^2$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (3 April Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the curve $z(1+i)+\overline{z}(1-i)=4,\ z\in\mathbb{C}$, divide the region $|z-3|\le 1$ into two parts of areas $\alpha$ and $\beta$. Then $|\alpha-\beta|$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous function satisfying $f(0)=1$ and $f(2x)-f(x)=x$ for all $x\in\mathbb{R}$. If $\lim_{n\to\infty}{f(x)-f\left(\dfrac{x}{2^{n}}\right)}=G(x)$, then $\displaystyle \sum_{r=1}^{10} G(r^{2})$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Suppose that the number of terms in an A.P. is $2k$, $k\in\mathbb{N}$. If the sum of all odd terms of the A.P. is $40$, the sum of all even terms is $55$ and the last term exceeds the first term by $27$, then $k$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the shortest distance between the lines $\dfrac{x-3}{3}=\dfrac{y-\alpha}{-1}=\dfrac{z-3}{1}$ and $\dfrac{x+3}{-3}=\dfrac{y+7}{2}=\dfrac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha+\beta$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $P(4,4\sqrt{3})$ be a point on the parabola $y^{2}=4ax$ and $PQ$ be a focal chord of the parabola. If $M$ and $N$ are the feet of perpendiculars drawn from $P$ and $Q$ respectively on the directrix of the parabola, then the area of the quadrilateral $PQMN$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A={1,6,11,16,\ldots}$ and $B={9,16,23,30,\ldots}$ be the sets consisting of the first $2025$ terms of two arithmetic progressions. Then $n(A\cup B)$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $E:\ \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1,\ a>b$ and $H:\ \dfrac{x^{2}}{A^{2}}-\dfrac{y^{2}}{B^{2}}=1$. Let the distance between the foci of $E$ and the foci of $H$ be $2\sqrt{3}$. If $a-A=2$, and the ratio of the eccentricities of $E$ and $H$ is $\dfrac{1}{3}$, then the sum of the lengths of their latus recta is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (22 January Evening Shift) PYQ

Solution


JEE MAIN PYQ 2025
The length of the latus–rectum of the ellipse, whose foci are $(2,5)$ and $(2,-3)$ and eccentricity is $\dfrac{4}{5}$, is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let a curve $y=f(x)$ pass through the points $(0,5)$ and $(\log_e 2,\,k)$. If the curve satisfies the differential equation $2(3+y)e^{2x}\,dx-(7+e^{2x})\,dy=0$, then $k$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider the equation $x^{2}+4x-n=0$, where $n\in[20,100]$ is a natural number. Then the number of all distinct values of $n$, for which the given equation has integral roots, is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $P$ be the foot of the perpendicular from the point $Q(10,-3,-1)$ on the line $\dfrac{x-3}{7}=\dfrac{y-2}{-1}=\dfrac{z+1}{-2}$. Then the area of the right-angled triangle $PQR$, where $R$ is the point $(3,-2,1)$, is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider the sets $A={(x,y)\in\mathbb{R}\times\mathbb{R}:x^{2}+y^{2}=25}$, $B={(x,y)\in\mathbb{R}\times\mathbb{R}:x^{2}+9y^{2}=144}$, $C={(x,y)\in\mathbb{Z}\times\mathbb{Z}:x^{2}+y^{2}\le 4}$ and $D=A\cap B$. The total number of one-one functions from the set $D$ to the set $C$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The number of words that can be formed using all the letters of the word "DAUGHTER" such that all the vowels never come together is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$1+3+5^2+7+9^2+\cdots$ upto $40$ terms is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f(x)=\log_e x$ and $g(x)=\dfrac{x^{4}-2x^{3}+3x^{2}-2x+2}{2x^{2}-2x+1}$. Then the domain of $f\circ g$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $10\sin^4\theta+15\cos^4\theta=6$, then the value of $\dfrac{27\csc^6\theta+8\sec^6\theta}{16\sec^8\theta}$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let the position vectors of the vertices A, B and C of a tetrahedron ABCD be $\hat{i}+2\hat{j}+\hat{k}$, $\hat{i}+3\hat{j}-2\hat{k}$ and $2\hat{i}+\hat{j}-\hat{k}$ respectively. The altitude from the vertex $D$ to the opposite face $ABC$ meets the median through $A$ of $\triangle ABC$ at the point $E$. If the length of $AD$ is $\dfrac{\sqrt{110}}{3}$ and the volume of the tetrahedron is $\dfrac{\sqrt{805}}{6\sqrt{2}}$, then the position vector of $E$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The value of $\displaystyle \int_{-1}^{1}\frac{(1+\sqrt{|x|}-x)e^{x}+(\sqrt{|x|}-x)e^{-x}}{e^{x}+e^{-x}},dx$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\dfrac{\pi}{2}\le x\le \dfrac{3\pi}{4}$, then $\cos^{-1}\!\left(\dfrac{12}{13}\cos x+\dfrac{5}{13}\sin x\right)$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f:[0,\infty)\to\mathbb{R}$ be a differentiable function such that $f(x)=1-2x+\displaystyle\int_{0}^{x}e^{,x-t}f(t),dt$ for all $x\in[0,\infty)$. Then the area of the region bounded by $y=f(x)$ and the coordinate axes is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
One die has two faces marked 1, two faces marked 2, one face marked 3 and one face marked 4. Another die has one face marked 1, two faces marked 2, two faces marked 3 and one face marked 4. The probability that the sum of the numbers is 4 or 5 when both dice are thrown together is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The probability of forming a $12$-person committee from $4$ engineers, $2$ doctors, and $10$ professors containing at least $3$ engineers and at least $1$ doctor is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The value of $(\sin 70^\circ)\,\big(\cot 10^\circ \cot 70^\circ - 1\big)$ is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
A box contains $10$ pens of which $3$ are defective. A sample of $2$ pens is drawn at random and let $X$ denote the number of defective pens. Then the variance of $X$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
$ f(x)=\left\{\begin{array}{l} \frac{2}{x}\left\{\sin \left(k_1+1\right) x+\sin \left(k_2-1\right) x\right\}, \quad x<0 \\ 4, \quad x=0 \\ \frac{2}{x} \log _e\left(\frac{2+k_1 x}{2+k_2 x}\right), \quad x>0 \end{array}\right. $

is continuous at $x=0$, then $k_1^2+k_2^2$ is equal to :





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Consider two vectors $\vec{u}=3\hat{i}-\hat{j}$ and $\vec{v}=2\hat{i}+\hat{j}-\lambda\hat{k},\ \lambda>0$. The angle between them is given by $\cos^{-1}!\left(\dfrac{\sqrt{5}}{2\sqrt{7}}\right)$. Let $\vec{v}=\vec{v}_1+\vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $\left|\vec{v}_1\right|^{2}+\left|\vec{v}_2\right|^{2}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If the system of equations $(\lambda-1)x+(\lambda-4)y+\lambda z=5$ $\lambda x+(\lambda-1)y+(\lambda-4)z=7$ $(\lambda+1)x+(\lambda+2)y-(\lambda+2)z=9$ has infinitely many solutions, then $\lambda^2+\lambda$ is equal to:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
For an integer $n\ge 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2n-3}$ is $16$, then the distance of the point $P,(2n-1,\ n^{2}-4n)$ from the line $x+y=8$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
The value of $\int_{e^2}^{e^4} \frac{1}{x}\left(\frac{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}}{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}+e^{\left(\left(6-\log _e x\right)^2+1\right)^{-1}}}\right) d x$ is





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $A$ and $B$ be two distinct points on the line $L:\ \dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1,2,3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA}\cdot\overrightarrow{OB}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Marks obtained by all the students of class 12 are presented in a frequency distribution with classes of equal width. The median of this grouped data is $14$ with median class interval $12$–$18$ and median class frequency $12$. If the number of students whose marks are less than $12$ is $18$, then the total number of students is:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $f,g:(1,\infty)\to\mathbb{R}$ be defined as $f(x)=\dfrac{2x+3}{5x+2}$ and $g(x)=\dfrac{2-3x}{1-x}$. If the range of the function $f\circ g:[2,4]\to\mathbb{R}$ is $[\alpha,\beta]$, then $\dfrac{1}{\beta-\alpha}$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
Let $\left|\frac{\bar{z}-i}{2 \bar{z}+i}\right|=\frac{1}{3}, z \in C$, be the equation of a circle with center at $C$. If the area of the triangle, whose vertices are at the points $(0,0), C$ and $(\alpha, 0)$ is 11 square units, then $\alpha^2$ equals:





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (23 January Morning Shift) PYQ

Solution


JEE MAIN PYQ 2025
If $\displaystyle \lim_{x\to 1^{+}}\frac{(x-1)\big(6+\lambda\cos(x-1)\big)+\mu\sin(1-x)}{(x-1)^{3}}=-1$, where $\lambda,\mu\in\mathbb{R}$, then $\lambda+\mu$ is equal to





Go to Discussion

JEE MAIN JEE Mains PYQ JEE MAIN JEE Main 2025 (4 April Morning Shift) PYQ

Solution



JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...