Let $\vec{a} = \alpha \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \alpha \hat{k}$, $\alpha > 0$.
If the projection of $\vec{a} \times \vec{b}$ on the vector $-\hat{i} + 2\hat{j} - 2\hat{k}$ is $30$, then $\alpha$ is equal to:
Let $E_1, E_2, E_3$ be three mutually exclusive events such that
$P(E_1)=\dfrac{2+3p}{6}$, $P(E_2)=\dfrac{2-p}{8}$ and $P(E_3)=\dfrac{1-p}{2}$.
If the maximum and minimum values of $p$ are $p_1$ and $p_2$, then $(p_1+p_2)$ is equal to:
Let $A=\begin{bmatrix}1\\1\\1\end{bmatrix}$ and
$B=\begin{bmatrix}
9^{2} & -10^{2} & 11^{2}\\
12^{2} & 13^{2} & -14^{2}\\
-15^{2} & 16^{2} & 17^{2}
\end{bmatrix}$,
then the value of $A'BA$ is:
Let $P$ and $Q$ be any points on the curves $(x-1)^{2}+(y+1)^{2}=1$ and $y=x^{2}$, respectively.
The distance between $P$ and $Q$ is minimum for some value of the abscissa of $P$ in the interval:
If the maximum value of $a$, for which the function $f_a(x)=\tan^{-1}(2x)-3ax+7$ is non-decreasing in $\left(-\tfrac{\pi}{6},\,\tfrac{\pi}{6}\right)$, is $\bar a$, then $f_{\bar a}\!\left(\tfrac{\pi}{8}\right)$ is equal to :
Let the solution curve $y=f(x)$ of the differential equation
$\dfrac{dy}{dx}+\dfrac{xy}{x^{2}-1}=\dfrac{x^{4}+2x}{\sqrt{1-x^{2}}}$, $x\in(-1,1)$,
pass through the origin. Then $\displaystyle \int_{-\sqrt{3}/2}^{\sqrt{3}/2} f(x)\,dx$ is equal to:
Let the abscissae of the two points $P$ and $Q$ on a circle be the roots of $x^{2}-4x-6=0$
and the ordinates of $P$ and $Q$ be the roots of $y^{2}+2y-7=0$.
If $PQ$ is a diameter of the circle $x^{2}+y^{2}+2ax+2by+c=0$, then the value of $(a+b-c)$ is _________.
(A)
$ \text{If } 0 < x < \tfrac{1}{\sqrt{2}} \text{ and } \tfrac{\sin^{-1}x}{\alpha} = \tfrac{\cos^{-1}x}{\beta}, \text{ then the value of } \sin!\left(\tfrac{2\pi\alpha}{\alpha+\beta}\right) \text{ is :}$
$ \text{Let } R_1 \text{ and } R_2 \text{ be two relations defined on } \mathbb{R} \text{ by } a R_1 b \Leftrightarrow ab \ge 0 \text{ and } aR_2b \Leftrightarrow a \ge b. \text{ Then,}$
$ \text{Let } f,g : \mathbb{N} - \{1\} \to \mathbb{N} \text{ be functions defined by } f(a) = \alpha, \text{ where } \alpha \text{ is the maximum of the powers of those primes } p \text{ such that } p^\alpha \text{ divides } a, \text{ and } g(a) = a+1, \text{ for all } a \in \mathbb{N} - \{1\}. \text{ Then, the function } f+g \text{ is} $
$ \text{Let the minimum value } v_{0} \text{ of } v=\lvert z\rvert^{2}+\lvert z-3\rvert^{2}+\lvert z-6i\rvert^{2},\ z\in\mathbb{C} \text{ be attained at } z=z_{0}. \text{ Then } \lvert 2z_{0}^{2}-\overline{z_{0}}^{\,3}+3\rvert^{2}+v_{0}^{2} \text{ is equal to:} $
Let $A = \begin{pmatrix} 1 & 2 \\ -2 & -5 \end{pmatrix}$.
Let $\alpha, \beta \in \mathbb{R}$ be such that $\alpha A^2 + \beta A = 2I$.
Then $\alpha + \beta$ is equal to :
$ \text{Suppose } a_1, a_2, \ldots, a_n, \ldots \text{ be an arithmetic progression of natural numbers. If } \dfrac{S_5}{S_9} = \dfrac{5}{17} \text{ and } 110 < a_{15} < 120, \text{ then the sum of the first ten terms of the progression is equal to:} $
$ \text{Let } f:\mathbb{R}\to\mathbb{R} \text{ be a function defined as }
f(x)=a\sin\!\left(\frac{\pi\lfloor x\rfloor}{2}\right)+\lfloor 2-x\rfloor,\ a\in\mathbb{R},
\text{ where } \lfloor t\rfloor \text{ is the greatest integer } \le t.
\text{ If } \lim_{x\to -1} f(x) \text{ exists, then the value of } \int_{0}^{4} f(x)\,dx \text{ is equal to:}$
Let $y = y_{1}(x)$ and $y = y_{2}(x)$ be two distinct solutions of the differential equation $\dfrac{dy}{dx} = x + y$, with $y_{1}(0) = 0$ and $y_{2}(0) = 1$ respectively. Then, the number of points of intersection of $y = y_{1}(x)$ and $y = y_{2}(x)$ is
Let $\vec{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}$ and $\vec{b} = 3\hat{i} - 5\hat{j} + 4\hat{k}$ be two vectors, such that $\vec{a} \times \vec{b} = -\hat{i} + 9\hat{j} + 12\hat{k}$. Then the projection of $\vec{b} - 2\vec{a}$ on $\vec{b} + \vec{a}$ is equal to:
Let $S$ be the sample space of all five digit numbers. It $p$ is the probability that a randomly selected number from $S$, is a multiple of $7$ but not divisible by $5$, then $9p$ is equal to :
If the circle $x^{2} + y^{2} - 2gx + 6y - 19c = 0,; g,c \in \mathbb{R}$ passes through the point $(6,1)$ and its centre lies on the line $x - 2cy = 8$, then the length of intercept made by the circle on $x$-axis is :
Let $A(1,1)$, $B(-4,3)$, $C(-2,-5)$ be vertices of a triangle $ABC$, $P$ be a point on side $BC$, and $\Delta_1$ and $\Delta_2$ be the areas of triangles $APB$ and $ABC$, respectively. If $\Delta_1:\Delta_2=4:7$, then the area enclosed by the lines $AP$, $AC$ and the $x$-axis is:
The domain of the function $f(x)=\sin^{-1}!\big([,2x^{2}-3,]\big)+\log_{2}!\left(\log_{1/2}(x^{2}-5x+5)\right)$, where $[,\cdot,]$ is the greatest integer function, is:
If $\alpha, \beta$ are the roots of the equation
$x^{2} - \left(5 + 3\sqrt{\log_{3}5} - 5\sqrt{\log_{5}3}\right)x + 3\left(3^{\tfrac{1}{3}\log_{3}5} - 5^{\tfrac{2}{3}\log_{5}3} - 1\right) = 0$,
then the equation, whose roots are $\alpha + \tfrac{1}{\beta}$ and $\beta + \tfrac{1}{\alpha}$, is:
Let the sum of an infinite G.P., whose first term is $a$ and the common ratio is $r$, be $5$. Let the sum of its first five terms be $\dfrac{98}{25}$. Then the sum of the first $21$ terms of an A.P., whose first term is $10ar$, $n^{\text{th}}$ term is $a_n$ and the common difference is $10ar^{2}$, is equal to:
The surface area of a balloon of spherical shape being inflated, increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is :
Bag A contains 2 white, 1 black and 3 red balls and bag B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random, are found to be 1 red and 1 black. If the probability that both balls come from Bag A is ${6 \over {11}}$, then n is equal to __________.
The value of $\displaystyle \int_{0}^{2}!\left(,|2x^{2}-3x|+\big[x-\tfrac{1}{2}\big]\right),dx$, where $[\cdot]$ is the greatest integer function, is equal to:
Consider a curve $y=y(x)$ in the first quadrant as shown in the figure. Let the area $A_{1}$ be twice the area $A_{2}$. Then the normal to the curve perpendicular to the line $2x-12y=15$ does NOT pass through the point:
If the sum of the squares of the reciprocals of the roots $\alpha$ and $\beta$ of the equation 3x2 + $\lambda$x $-$ 1 = 0 is 15, then 6($\alpha$3 + $\beta$3)2 is equal to :
The equations of the sides $AB$, $BC$ and $CA$ of a triangle $ABC$ are $2x+y=0$, $x+py=39$ and $x-y=3$ respectively and $P(2,3)$ is its circumcentre. Then which of the following is NOT true?
If the length of the perpendicular drawn from the point $P(a,4,2),;a>0$ on the line $\dfrac{x+1}{2}=\dfrac{y-3}{3}=\dfrac{z-1}{-1}$ is $2\sqrt{6}$ units and $Q(\alpha_{1},\alpha_{2},\alpha_{3})$ is the image of the point $P$ in this line, then $a+\sum_{i=1}^{3}\alpha_{i}$ is equal to:
Let $X$ be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of $X$ is:
Let $C$ be the centre of the circle $x^{2}+y^{2}-x+2y=\dfrac{11}{4}$ and $P$ be a point on the circle. A line passes through the point $C$, makes an angle of $\dfrac{\pi}{4}$ with the line $CP$ and intersects the circle at the points $Q$ and $R$. Then the area of the triangle $PQR$ (in unit$^{2}$) is :
If $\{ {a_i}\} _{i = 1}^n$, where n is an even integer, is an arithmetic progression with common difference 1, and $\sum\limits_{i = 1}^n {{a_i} = 192} ,\,\sum\limits_{i = 1}^{n/2} {{a_{2i}} = 120} $, then n is equal to :
Let the solution curve of the differential equation
$x,dy = \left(\sqrt{x^{2}+y^{2}}+y\right)dx,; x>0,$
intersect the line $x=1$ at $y=0$ and the line $x=2$ at $y=\alpha$. Then the value of $\alpha$ is:
Considering only the principal values of the inverse trigonometric functions, the domain of the function
$f(x)=\cos^{-1}!\left(\dfrac{x^{2}-4x+2}{x^{2}+3}\right)$ is:
Let $\widehat a$, $\widehat b$ be unit vectors. If $\overrightarrow c $ be a vector such that the angle between $\widehat a$ and $\overrightarrow c $ is ${\pi \over {12}}$, and $\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$, then ${\left| {6\overrightarrow c } \right|^2}$ is equal to :
Let the vectors $\vec a=(1+t)\hat i+(1-t)\hat j+\hat k$, $\vec b=(1-t)\hat i+(1+t)\hat j+2\hat k$ and $\vec c=t\hat i-t\hat j+\hat k$, $t\in\mathbb R$ be such that for $\alpha,\beta,\gamma\in\mathbb R$, $\alpha\vec a+\beta\vec b+\gamma\vec c=\vec 0\Rightarrow \alpha=\beta=\gamma=0$. Then, the set of all values of $t$ is:
Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation
$\cos^{-1}(x)-2\sin^{-1}(x)=\cos^{-1}(2x)$
is equal to:
Let a vector $\vec{a}$ has magnitude $9$. Let a vector $\vec{b}$ be such that for every $(x,y)\in\mathbb{R}\times\mathbb{R}-{(0,0)}$, the vector $(x\vec{a}+y\vec{b})$ is perpendicular to the vector $(6y\vec{a}-18x\vec{b})$. Then the value of $|\vec{a}\times\vec{b}|$ is equal to:
For $t\in(0,2\pi)$, if $\triangle ABC$ is an equilateral triangle with vertices $A(\sin t,-\cos t)$, $B(\cos t,\sin t)$ and $C(a,b)$ such that its orthocentre lies on a circle with centre $\left(1,\tfrac{1}{3}\right)$, then $(a^{2}-b^{2})$ is equal to:
Let the system of linear equations
$x + y + \alpha z = 2$,
$3x + y + z = 4$,
$x + 2z = 1$
have a unique solution $(x^*, y^*, z^*)$. If $(\alpha, x^*)$, $(y^*, \alpha)$ and $(x^*, -y^*)$ are collinear points, then the sum of absolute values of all possible values of $\alpha$ is ?
For $\alpha \in \mathbb{N}$, consider a relation $R$ on $\mathbb{N}$ given by
$R={(x,y):3x+\alpha y \text{ is a multiple of } 7}$.
The relation $R$ is an equivalence relation if and only if:
Out of $60%$ female and $40%$ male candidates appearing in an exam, $60%$ candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability that the chosen candidate is a female, is:
where [t] denotes greatest integer $$\le$$ t. If m is the number of points where $$f$$ is not continuous and n is the number of points where $$f$$ is not differentiable, then the ordered pair (m, n) is :
If $y=y(x),\; x\in(0,\pi/2)$ be the solution curve of the differential equation
$$(\sin^{2}2x)\dfrac{dy}{dx}+(8\sin^{2}2x+2\sin 4x)y=2e^{-4x}(2\sin 2x+\cos 2x),$$
with $y(\pi/4)=e^{-\pi}$, then $y(\pi/6)$ is equal to :
A particle is moving in the xy-plane along a curve C passing through the point (3, 3). The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment PQ, then C is a parabola with :
Let the maximum area of the triangle that can be inscribed in the ellipse ${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 4} = 1,\,a > 2$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be $6\sqrt 3 $. Then the eccentricity of the ellipse is :
Let the area of the triangle with vertices $A(1,\alpha)$, $B(\alpha,0)$ and $C(0,\alpha)$ be $4$ sq. units. If the points $(\alpha,-\alpha)$, $(-\alpha,\alpha)$ and $(\alpha^2,\beta)$ are collinear, then $\beta$ is equal to:
$ \text{Let } \alpha, \beta \text{ and } \gamma \text{ be three positive real numbers. Let } f(x) = \alpha x^{5} + \beta x^{3} + \gamma x,; x \in \mathbb{R} \text{ and } g : \mathbb{R} \to \mathbb{R} \text{ be such that } g(f(x)) = x \text{ for all } x \in \mathbb{R}. \text{ If } a_{1}, a_{2}, a_{3}, \ldots, a_{n} \text{ be in arithmetic progression with mean zero, then the value of } f!\left(g!\left(\frac{1}{n}\sum_{i=1}^{n} f(a_{i})\right)\right) \text{ is equal to:}$
$
\text{Let } \alpha, \beta \text{ be the roots of the equation } x^{2} - \sqrt{2}x + \sqrt{6} = 0
\text{ and } \dfrac{1}{\alpha^{2}} + 1, ; \dfrac{1}{\beta^{2}} + 1 \text{ be the roots of the equation }
x^{2} + ax + b = 0.
$
$\text{Then the roots of the equation } x^{2} - (a+b-2)x + (a+b+2) = 0 \text{ are :}$
If the shortest distance between the lines $\dfrac{x-1}{2} = \dfrac{y-2}{3} = \dfrac{z-3}{\lambda}$ and $\dfrac{x-2}{1} = \dfrac{y-4}{4} = \dfrac{z-5}{5}$ is $\dfrac{1}{\sqrt{3}}$, then the sum of all possible values of $\lambda$ is:
$S = \{\, x \in [-6,3] \setminus \{-2,2\} \;:\; \dfrac{|x+3|-1}{|x|-2} \geq 0 \,\}$
$T = \{\, x \in \mathbb{Z} \;:\; x^{2} - 7|x| + 9 \leq 0 \,\}$
Then the number of elements in $S \cap T$ is :
If the shortest distance between the lines $\dfrac{x-1}{2} = \dfrac{y-2}{3} = \dfrac{z-3}{\lambda}$ and $\dfrac{x-2}{1} = \dfrac{y-4}{4} = \dfrac{z-5}{5}$ is $\dfrac{1}{\sqrt{3}}$, then the sum of all possible values of $\lambda$ is:
$ \text{Let } A \text{ and } B \text{ be any two } 3\times 3 \text{ symmetric and skew-symmetric matrices respectively. Then which of the following is NOT true?} $
Let $\lambda^*$ be the largest value of $\lambda$ for which the function $f_\lambda(x) = 4\lambda x^3 - 36\lambda x^2 + 36x + 48$ is increasing for all $x \in \mathbb{R}$. Then $f_{\lambda^*}(1) + f_{\lambda^*}(-1)$ is equal to:
The function $f : \mathbb{R} \to \mathbb{R}$ defined by
$$
f(x) = \lim_{n \to \infty} \frac{\cos(2 \pi x) - x^{2n} \sin(x-1)}{1 + x^{2n+1} - x^{2n}}
$$
is continuous for all $x$ in :
Let $A$ be a $3 \times 3$ real matrix such that
$A\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix} = \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}, \quad
A\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix} = \begin{pmatrix}-1 \\ 0 \\ 1\end{pmatrix}, \quad
A\begin{pmatrix}0 \\ 0 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 1 \\ 2\end{pmatrix}.$
If $X = (x_1, x_2, x_3)^T$ and $I$ is an identity matrix of order $3$, then the system
$(A - 2I)X = \begin{pmatrix}4 \\ 1 \\ 1\end{pmatrix}$ has:
Let
$x(t) = 2\sqrt{2}\cos t \sqrt{\sin 2t}$
and
$y(t) = 2\sqrt{2}\sin t \sqrt{\sin 2t}, \; t \in (0,\tfrac{\pi}{2}).$
Then
$\dfrac{1+\left(\tfrac{dy}{dx}\right)^2}{\tfrac{d^2y}{dx^2}}$ at $t=\tfrac{\pi}{4}$ is equal to :
Let f : R $\to$ R be defined as $f(x) = {x^3} + x - 5$. If g(x) is a function such that $f(g(x)) = x,\forall 'x' \in R$, then g'(63) is equal to ________________.
If ${1 \over {2\,.\,{3^{10}}}} + {1 \over {{2^2}\,.\,{3^9}}} + \,\,.....\,\, + \,\,{1 \over {{2^{10}}\,.\,3}} = {K \over {{2^{10}}\,.\,{3^{10}}}}$, then the remainder when K is divided by 6 is :
$ \text{The area enclosed by the curves } y=\log_{e}(x+e^{2}),; x=\log_{e}!\left(\dfrac{2}{y}\right) \text{ and } x=\log_{e}2,\ \text{above the line } y=1,\ \text{is:} $
Let f(x) be a polynomial function such that $f(x) + f'(x) + f''(x) = {x^5} + 64$. Then, the value of $\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$ is equal to:
$ \text{Let } y=y(x) \text{ be the solution curve of the differential equation } \dfrac{dy}{dx}+\dfrac{1}{x^{2}-1},y=\left(\dfrac{x-1}{x+1}\right)^{1/2},; x>1,\ \text{passing through the point } \left(2,\sqrt{\tfrac{1}{3}}\right). \text{ Then } \sqrt{7},y(8) \text{ is equal to:} $
Let E1 and E2 be two events such that the conditional probabilities $P({E_1}|{E_2}) = {1 \over 2}$, $P({E_2}|{E_1}) = {3 \over 4}$ and $P({E_1} \cap {E_2}) = {1 \over 8}$. Then :
Let the hyperbola $H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$ pass through the point $(2\sqrt{2}, -2\sqrt{2})$.
A parabola is drawn whose focus is same as the focus of $H$ with positive abscissa and the directrix of the parabola passes through the other focus of $H$.
If the length of the latus rectum of the parabola is $e$ times the length of the latus rectum of $H$, where $e$ is the eccentricity of $H$,
then which of the following points lies on the parabola?
Let $A = \left[ {\matrix{ 0 & { - 2} \cr 2 & 0 \cr } } \right]$. If M and N are two matrices given by $M = \sum\limits_{k = 1}^{10} {{A^{2k}}} $ and $N = \sum\limits_{k = 1}^{10} {{A^{2k - 1}}} $ then MN2 is :
$ \text{Let } S \text{ be the set of all } a \in \mathbb{R} \text{ for which the angle between the vectors } \vec{u}=a(\log_{e} b),\hat{i}-6\hat{j}+3\hat{k} \text{ and } \vec{v}=(\log_{e} b),\hat{i}+2\hat{j}+2a(\log_{e} b),\hat{k},\ (b>1), \text{ is acute. Then } S \text{ is equal to:} $
Let $g:(0,\infty ) \to R$ be a differentiable function such that $\int {\left( {{{x(\cos x - \sin x)} \over {{e^x} + 1}} + {{g(x)\left( {{e^x} + 1 - x{e^x}} \right)} \over {{{({e^x} + 1)}^2}}}} \right)dx = {{x\,g(x)} \over {{e^x} + 1}} + c} $, for all x > 0, where c is an arbitrary constant. Then :
$ \text{Let A and B be two events such that } P(B|A)=\frac{2}{5}, P(A|B)=\frac{1}{7},; \text{and } P(A\cap B)=\frac{1}{9}. $
Consider:(S1) $P(A' \cup B)=\frac{5}{6}$
(S2) $P(A' \cap B')=\frac{1}{18}$
Let $f:R \to R$ and $g:R \to R$ be two functions defined by $f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$ and $g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$. Then, for which of the following range of $\alpha$, the inequality $f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$ holds ?
Let $R$ be a relation from the set ${1,2,3,\dots,60}$ to itself such that
R={(a,b):b=pq, where p,q≥3 are prime numbers}.R = \{(a,b) : b = pq, \;\; \text{where $p,q \geq 3$ are prime numbers} \}.R={(a,b):b=pq,where p,q≥3 are prime numbers}.
Then, the number of elements in $R$ is :
Let $\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$ ${a_i} > 0$, $i = 1,2,3$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $\overrightarrow a $ on the vector $3\widehat i + 4\widehat j$ be 7. Let $\overrightarrow b $ be a vector obtained by rotating $\overrightarrow a $ with 90$^\circ$. If $\overrightarrow a $, $\overrightarrow b $ and x-axis are coplanar, then projection of a vector $\overrightarrow b $ on $3\widehat i + 4\widehat j$ is equal to:
Let $y = y(x)$ be the solution of the differential equation $(x + 1)y' - y = {e^{3x}}{(x + 1)^2}$, with $y(0) = {1 \over 3}$. Then, the point $x = - {4 \over 3}$ for the curve $y = y(x)$ is :
If the solution curve $y = y(x)$ of the differential equation ${y^2}dx + ({x^2} - xy + {y^2})dy = 0$, which passes through the point (1, 1) and intersects the line $y = \sqrt 3 x$ at the point $(\alpha ,\sqrt 3 \alpha )$, then value of ${\log _e}(\sqrt 3 \alpha )$ is equal to :
Let $x = 2t$, $y = {{{t^2}} \over 3}$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $SA \bot BA$, where A is any point on the conic. If k is the ordinate of the centroid of the $\Delta$SAB, then $\mathop {\lim }\limits_{t \to 1} k$ is equal to :
If
$\lim_{x \to 0} \dfrac{\alpha e^{x^2} + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \dfrac{2}{3}$,
where $\alpha, \beta, \gamma \in \mathbb{R}$, then which of the following is NOT correct?
Let a circle C in complex plane pass through the points ${z_1} = 3 + 4i$, ${z_2} = 4 + 3i$ and ${z_3} = 5i$. If $z( \ne {z_1})$ is a point on C such that the line through z and z1 is perpendicular to the line through z2 and z3, then $arg(z)$ is equal to :
Let the solution curve $y = y(x)$ of the differential equation
$\left(1 + e^{2x}\right)\left(\dfrac{dy}{dx} + y\right) = 1$
pass through the point $\left(0, \dfrac{\pi}{2}\right)$.
Then, $\lim_{x \to \infty} e^x y(x)$ is equal to :
Let a, b $\in$ R be such that the equation $a{x^2} - 2bx + 15 = 0$ has a repeated root $\alpha$. If $\alpha$ and $\beta$ are the roots of the equation ${x^2} - 2bx + 21 = 0$, then ${\alpha ^2} + {\beta ^2}$ is equal to :
$ \text{Let the solution curve } y=y(x) \text{ of the differential equation } (1+e^{2x})!\left(\dfrac{dy}{dx}+y\right)=1 \text{ pass through the point } \left(0,\dfrac{\pi}{2}\right). $
$ \text{Then } \lim_{x\to\infty} e^{x}y(x) \text{ is equal to:} $
Let z1 and z2 be two complex numbers such that ${\overline z _1} = i{\overline z _2}$ and $\arg \left( {{{{z_1}} \over {{{\overline z }_2}}}} \right) = \pi $. Then :
Let a line L pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=0, \mathrm{~b} \in \mathbf{R}-\left\{\frac{4}{3}\right\}$. If the line $\mathrm{L}$ also passes through the point $(1,1)$ and touches the circle $17\left(x^{2}+y^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$ is :
Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1,1). If the line AP intersects the line BC at the point Q$\left(k_{1}, k_{2}\right)$, then $k_{1}+k_{2}$ is equal to :
Let $\hat{a}$ and $\hat{b}$ be two unit vectors such that the angle between them is $\frac{\pi}{4}$. If $\theta$ is the angle between the vectors $(\hat{a}+\hat{b})$ and $(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))$, then the value of $164 \,\cos ^{2} \theta$ is equal to :
If $f(\alpha)=\int\limits_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha>0$ then $f\left(\mathrm{e}^{3}\right)+f\left(\mathrm{e}^{-3}\right)$ is equal to :
Water is being filled at the rate of 1 cm3 / sec in a right circular conical vessel (vertex downwards) of height 35 cm and diameter 14 cm. When the height of the water level is 10 cm, the rate (in cm2 / sec) at which the wet conical surface area of the vessel increases is
$ \text{Let the focal chord of the parabola } P: y^{2}=4x \text{ along the line } L: y=mx+c,; m>0 \text{ meet the parabola at the points } M \text{ and } N. \text{ Let the line } L \text{ be a tangent to the hyperbola } H: x^{2}-y^{2}=4. \text{ If } O \text{ is the vertex of } P \text{ and } F \text{ is the focus of } H \text{ on the positive } x\text{-axis, then the area of the quadrilateral } OMFN \text{ is:} $
If $y = y(x)$ is the solution of the differential equation $2{x^2}{{dy} \over {dx}} - 2xy + 3{y^2} = 0$ such that $y(e) = {e \over 3}$, then y(1) is equal to :
$ \text{The number of points where the function } f:\mathbb{R}\to\mathbb{R},\quad
f(x)=|x-1|\cos|x-2|\sin|x-1|+(x-3),|x^{2}-5x+4|,\ \text{is NOT differentiable, is:} $
A biased die is marked with numbers 2, 4, 8, 16, 32, 32 on its faces and the probability of getting a face with mark n is ${1 \over n}$. If the die is thrown thrice, then the probability, that the sum of the numbers obtained is 48, is :
$ \text{Let } f(x)=3^{(x^{2}-2)^{3}+4},; x\in\mathbb{R}. \text{ Then which of the following statements are true?} $
$P: x=0 \text{ is a point of local minima of } f$
$Q: x=\sqrt{2} \text{ is a point of inflection of } f$
$R: f' \text{ is increasing for } x>\sqrt{2}$
The line y = x + 1 meets the ellipse ${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$ at two points P and Q. If r is the radius of the circle with PQ as diameter then (3r)2 is equal to :
Let the function
$
f(x) =
\begin{cases}
\dfrac{\log_e(1+5x) - \log_e(1+\alpha x)}{x}, & x \neq 0 \\
10, & x = 0
\end{cases}
$
be continuous at $x=0$.
Then $\alpha$ is equal to:
Let $f(x) = {{x - 1} \over {x + 1}},\,x \in R - \{ 0, - 1,1\} $. If ${f^{n + 1}}(x) = f({f^n}(x))$ for all n $\in$ N, then ${f^6}(6) + {f^7}(7)$ is equal to
Which of the following matrices can NOT be obtained from the matrix
$\begin{bmatrix}-1 & 2 \\ 1 & -1\end{bmatrix}$
by a single elementary row operation?
Let $y=y(x)$ be the solution curve of the differential equation
$
\frac{dy}{dx}+\left(\frac{2x^{2}+11x+13}{x^{3}+6x^{2}+11x+6}\right)y=\frac{x+3}{x+1},\quad x>-1,
$
which passes through the point $(0,1)$. Then $y(1)$ is equal to:
Let f, g : R $\to$ R be two real valued functions defined as $f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$ and $g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($-$ 4) + (gof) (4) is equal to :
Let $m_1, m_2$ be the slopes of two adjacent sides of a square of side $a$ such that
$a^{2}+11a+3\left(m_{1}^{2}+m_{2}^{2}\right)=220.$
If one vertex of the square is $\big(10(\cos\alpha-\sin\alpha),\,10(\sin\alpha+\cos\alpha)\big)$, where $\alpha\in(0,\tfrac{\pi}{2})$, and the equation of one diagonal is
$(\cos\alpha-\sin\alpha)x+(\sin\alpha+\cos\alpha)y=10$, then
$
72\left(\sin^{4}\alpha+\cos^{4}\alpha\right)+a^{2}-3a+13
$
is equal to:
Let $A(\alpha,-2)$, $B(\alpha,6)$ and $C\!\left(\dfrac{\alpha}{4},-2\right)$ be vertices of $\triangle ABC$.
If $\left(5,\dfrac{\alpha}{4}\right)$ is the circumcentre of $\triangle ABC$, then which of the following is NOT correct about $\triangle ABC$?
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls.
One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be black in colour.
Then the probability that the transferred ball is red is:
Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of $\Delta$PQR is :
Let $S=\{\,z=x+iy:\ |z-1+i|\ge |z|,\ |z|<2,\ |z+i|=|z-1|\,\}$.
Then the set of all values of $x$, for which $w=2x+iy\in S$ for some $y\in\mathbb{R}$, is:
Let $\vec{a},\vec{b},\vec{c}$ be three coplanar concurrent vectors such that the angles between any two of them are the same. If the product of their magnitudes is $14$ and
$
(\vec{a}\times\vec{b})\cdot(\vec{b}\times\vec{c})
+(\vec{b}\times\vec{c})\cdot(\vec{c}\times\vec{a})
+(\vec{c}\times\vec{a})\cdot(\vec{a}\times\vec{b})=168,
$
then $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is equal to:
The mean of the numbers a, b, 8, 5, 10 is 6 and their variance is 6.8. If M is the mean deviation of the numbers about the mean, then 25 M is equal to :
Let $f(x) = 2{\cos ^{ - 1}}x + 4{\cot ^{ - 1}}x - 3{x^2} - 2x + 10$, $x \in [ - 1,1]$. If [a, b] is the range of the function f, then 4a $-$ b is equal to :
Let f(x) = min {1, 1 + x sin x}, 0 $\le$ x $\le$ 2$\pi $. If m is the number of points, where f is not differentiable and n is the number of points, where f is not continuous, then the ordered pair (m, n) is equal to
Consider a cuboid of sides 2x, 4x and 5x and a closed hemisphere of radius r. If the sum of their surface areas is a constant k, then the ratio x : r, for which the sum of their volumes is maximum, is :
If $y = y(x)$ is the solution of the differential equation $x{{dy} \over {dx}} + 2y = x\,{e^x}$, $y(1) = 0$ then the local maximum value of the function $z(x) = {x^2}y(x) - {e^x},\,x \in R$ is :
f the solution of the differential equation ${{dy} \over {dx}} + {e^x}\left( {{x^2} - 2} \right)y = \left( {{x^2} - 2x} \right)\left( {{x^2} - 2} \right){e^{2x}}$ satisfies $y(0) = 0$, then the value of y(2) is _______________.
The locus of the mid point of the line segment joining the point (4, 3) and the points on the ellipse ${x^2} + 2{y^2} = 4$ is an ellipse with eccentricity :
Let $\overrightarrow a = \widehat i + \widehat j + 2\widehat k$, $\overrightarrow b = 2\widehat i - 3\widehat j + \widehat k$ and $\overrightarrow c = \widehat i - \widehat j + \widehat k$ be three given vectors. Let $\overrightarrow v $ be a vector in the plane of $\overrightarrow a $ and $\overrightarrow b $ whose projection on $\overrightarrow c $ is ${2 \over {\sqrt 3 }}$. If $\overrightarrow v \,.\,\widehat j = 7$, then $\overrightarrow v \,.\,\left( {\widehat i + \widehat k} \right)$ is equal to :
The mean and standard deviation of 50 observations are 15 and 2 respectively. It was found that one incorrect observation was taken such that the sum of correct and incorrect observations is 70. If the correct mean is 16, then the correct variance is equal to :
Let the system of linear equations $x + 2y + z = 2$, $\alpha x + 3y - z = \alpha $, $ - \alpha x + y + 2z = - \alpha $ be inconsistent. Then $\alpha$ is equal to :
Let a be an integer such that $\mathop {\lim }\limits_{x \to 7} {{18 - [1 - x]} \over {[x - 3a]}}$ exists, where [t] is greatest integer $\le$ t. Then a is equal to :
If $\int {{{({x^2} + 1){e^x}} \over {{{(x + 1)}^2}}}dx = f(x){e^x} + C} $, where C is a constant, then ${{{d^3}f} \over {d{x^3}}}$ at x = 1 is equal to :
In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If ($\alpha$, $\beta$) is the centroid of $\Delta$ABC, then 15($\alpha$ + $\beta$) is equal to :
Let the eccentricity of an ellipse ${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$, $a > b$, be ${1 \over 4}$. If this ellipse passes through the point $\left( { - 4\sqrt {{2 \over 5}} ,3} \right)$, then ${a^2} + {b^2}$ is equal to :
If two straight lines whose direction cosines are given by the relations $l + m - n = 0$, $3{l^2} + {m^2} + cnl = 0$ are parallel, then the positive value of c is :
Let $\overrightarrow a = \widehat i + \widehat j - \widehat k$ and $\overrightarrow c = 2\widehat i - 3\widehat j + 2\widehat k$. Then the number of vectors $\overrightarrow b $ such that $\overrightarrow b \times \overrightarrow c = \overrightarrow a $ and $|\overrightarrow b | \in $ {1, 2, ........, 10} is :
Five numbers ${x_1},{x_2},{x_3},{x_4},{x_5}$ are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order $({x_1} < {x_2} < {x_3} < {x_4} < {x_5})$. The probability that ${x_2} = 7$ and ${x_4} = 11$ is :
If m and n respectively are the number of local maximum and local minimum points of the function $f(x) = \int\limits_0^{{x^2}} {{{{t^2} - 5t + 4} \over {2 + {e^t}}}dt} $, then the ordered pair (m, n) is equal to
Let f be a differentiable function in $\left( {0,{\pi \over 2}} \right)$. If $\int\limits_{\cos x}^1 {{t^2}\,f(t)dt = {{\sin }^3}x + \cos x} $, then ${1 \over {\sqrt 3 }}f'\left( {{1 \over {\sqrt 3 }}} \right)$ is equal to
If the solution curve of the differential equation $(({\tan ^{ - 1}}y) - x)dy = (1 + {y^2})dx$ passes through the point (1, 0), then the abscissa of the point on the curve whose ordinate is tan(1), is
If the equation of the parabola, whose vertex is at (5, 4) and the directrix is $3x + y - 29 = 0$, is ${x^2} + a{y^2} + bxy + cx + dy + k = 0$, then $a + b + c + d + k$ is equal to :
The set of values of k, for which the circle $C:4{x^2} + 4{y^2} - 12x + 8y + k = 0$ lies inside the fourth quadrant and the point $\left( {1, - {1 \over 3}} \right)$ lies on or inside the circle C, is :
Let $\overrightarrow a $ and $\overrightarrow b $ be the vectors along the diagonals of a parallelogram having area $2\sqrt 2 $. Let the angle between $\overrightarrow a $ and $\overrightarrow b $ be acute, $|\overrightarrow a | = 1$, and $|\overrightarrow a \,.\,\overrightarrow b | = |\overrightarrow a \times \overrightarrow b |$. If $\overrightarrow c = 2\sqrt 2 \left( {\overrightarrow a \times \overrightarrow b } \right) - 2\overrightarrow b $, then an angle between $\overrightarrow b $ and $\overrightarrow c $ is :
Let A1, A2, A3, ....... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = ${1 \over {1296}}$ and A2 + A4 = ${7 \over {36}}$, then the value of A6 + A8 + A10 is equal to
Let y = y(x) be the solution of the differential equation $x(1 - {x^2}){{dy} \over {dx}} + (3{x^2}y - y - 4{x^3}) = 0$, $x > 1$, with $y(2) = - 2$. Then y(3) is equal to :
Let f(x) be a quadratic polynomial such that f($-$2) + f(3) = 0. If one of the roots of f(x) = 0 is $-$1, then the sum of the roots of f(x) = 0 is equal to :
If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1 : 7 and a + n = 33, then the value of n is :
Let f : R $\to$ R be a differentiable function such that $f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$ and $f'\left( {{\pi \over 2}} \right) = 1$ and let $g(x) = \int_x^{\pi /4} {(f'(t)\sec t + \tan t\sec t\,f(t))\,dt} $ for $x \in \left[ {{\pi \over 4},{\pi \over 2}} \right)$. Then $\mathop {\lim }\limits_{x \to {{\left( {{\pi \over 2}} \right)}^ - }} g(x)$ is equal to :
Let f : R $\to$ R be a continuous function satisfying f(x) + f(x + k) = n, for all x $\in$ R where k > 0 and n is a positive integer. If ${I_1} = \int\limits_0^{4nk} {f(x)dx} $ and ${I_2} = \int\limits_{ - k}^{3k} {f(x)dx} $, then :
Let x = x(y) be the solution of the differential equation $2y\,{e^{x/{y^2}}}dx + \left( {{y^2} - 4x{e^{x/{y^2}}}} \right)dy = 0$ such that x(1) = 0. Then, x(e) is equal to :
Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 $\tan x(\cos x - y)$. If the curve passes through the point $\left( {{\pi \over 4},0} \right)$, then the value of $\int\limits_0^{\pi /2} {y\,dx} $ is equal to :
Let a triangle be bounded by the lines L1 : 2x + 5y = 10; L2 : $-$4x + 3y = 12 and the line L3, which passes through the point P(2, 3), intersects L2 at A and L1 at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to :
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola ${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$. Let e' and l' respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If ${e^2} = {{11} \over {14}}l$ and ${\left( {e'} \right)^2} = {{11} \over 8}l'$, then the value of $77a + 44b$ is equal to :
Let $\overrightarrow a = \alpha \widehat i + 2\widehat j - \widehat k$ and $\overrightarrow b = - 2\widehat i + \alpha \widehat j + \widehat k$, where $\alpha \in R$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overrightarrow a $ and $\overrightarrow b $ is $\sqrt {15({\alpha ^2} + 4)} $, then the value of $2{\left| {\overrightarrow a } \right|^2} + \left( {\overrightarrow a \,.\,\overrightarrow b } \right){\left| {\overrightarrow b } \right|^2}$ is equal to :
where [t] is the greatest integer less than or equal to t. Let m be the number of points where f is not differentiable and $I = \int\limits_{ - 2}^2 {f(x)\,dx} $. Then the ordered pair (m, I) is equal to :
Let $\overrightarrow a = \alpha \widehat i + 3\widehat j - \widehat k$, $\overrightarrow b = 3\widehat i - \beta \widehat j + 4\widehat k$ and $\overrightarrow c = \widehat i + 2\widehat j - 2\widehat k$ where $\alpha ,\,\beta \in R$, be three vectors. If the projection of $\overrightarrow a $ on $\overrightarrow c $ is ${{10} \over 3}$ and $\overrightarrow b \times \overrightarrow c = - 6\widehat i + 10\widehat j + 7\widehat k$, then the value of $\alpha + \beta $ is equal to :
Let $A = [{a_{ij}}]$ be a square matrix of order 3 such that ${a_{ij}} = {2^{j - i}}$, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ...... + A10 is equal to :
Let a set $A = A_1 \cup A_2 \cup \cdots \cup A_k$, where $A_i \cap A_j = \phi$ for $i \ne j$, $1 \le i, j \le k$. Define the relation $R$ from $A$ to $A$ by $R = {(x,y) : y \in A_i \text{ if and only if } x \in A_i, ; 1 \le i \le k}$. Then, $R$ is :
The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A' B (where B is the point (2, 3)) subtend angle ${\pi \over 4}$ at the origin, is equal to :
A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :
If the constant term in the expansion of ${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$ is 2k.l, where l is an odd integer, then the value of k is equal to:
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of ${\pi \over 2}$ at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse $E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$, ${a^2} > {b^2}$. If e is the eccentricity of the ellipse E, then the value of ${1 \over {{e^2}}}$ is equal to :
Let the mean and the variance of 5 observations $x_1, x_2, x_3, x_4, x_5$ be $\dfrac{24}{5}$ and $\dfrac{194}{25}$ respectively. If the mean and variance of the first 4 observations are $\dfrac{7}{2}$ and $a$ respectively, then $(4a + x_5)$ is equal to:
If y = y(x) is the solution of the differential equation $\left( {1 + {e^{2x}}} \right){{dy} \over {dx}} + 2\left( {1 + {y^2}} \right){e^x} = 0$ and y (0) = 0, then $6\left( {y'(0) + {{\left( {y\left( {{{\log }_e}\sqrt 3 } \right)} \right)}^2}} \right)$ is equal to
Let a triangle ABC be inscribed in the circle ${x^2} - \sqrt 2 (x + y) + {y^2} = 0$ such that $\angle BAC = {\pi \over 2}$. If the length of side AB is $\sqrt 2 $, then the area of the $\Delta$ABC is equal to :
The distance of the origin from the centroid of the triangle whose two sides have the equations $x - 2y + 1 = 0$ and $2x - y - 1 = 0$ and whose orthocenter is $\left( {{7 \over 3},{7 \over 3}} \right)$ is :
$ \text{Let A, B, C be three points whose position vectors respectively are } \vec{a} = \hat{i} + 4\hat{j} + 3\hat{k}, ; \vec{b} = 2\hat{i} + \alpha \hat{j} + 4\hat{k}, ; \alpha \in \mathbb{R}, ; \vec{c} = 3\hat{i} - 2\hat{j} + 5\hat{k}. ; \text{If } \alpha \text{ is the smallest positive integer for which } \vec{a}, \vec{b}, \vec{c} \text{ are non-collinear, then the length of the median in } \triangle ABC \text{ through A is :}$
Let $A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$ and $B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right],\,\alpha \in C$. Then the absolute value of the sum of all values of $\alpha$ for which det(AB) = 0 is :
For two positive real numbers a and b such that ${1 \over {{a^2}}} + {1 \over {{b^3}}} = 4$, then minimum value of the constant term in the expansion of ${\left( {a{x^{{1 \over 8}}} + b{x^{ - {1 \over {12}}}}} \right)^{10}}$ is :
If xy4 attains maximum value at the point (x, y) on the line passing through the points (50 + $\alpha$, 0) and (0, 50 + $\alpha$), $\alpha$ > 0, then (x, y) also lies on the line :
If xy4 attains maximum value at the point (x, y) on the line passing through the points (50 + $\alpha$, 0) and (0, 50 + $\alpha$), $\alpha$ > 0, then (x, y) also lies on the line :
Let m and M respectively be the minimum and the maximum values of $f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$. Then m + M is equal to :
Let $\alpha_1, \alpha_2 ; (\alpha_1 < \alpha_2)$ be the values of $\alpha$ for the points $(\alpha, -3), (2, 0)$ and $(1, \alpha)$ to be collinear. Then the equation of the line, passing through $(\alpha_1, \alpha_2)$ and making an angle of $\frac{\pi}{3}$ with the positive direction of the x-axis, is :
Let the eccentricity of the ellipse ${x^2} + {a^2}{y^2} = 25{a^2}$ be b times the eccentricity of the hyperbola ${x^2} - {a^2}{y^2} = 5$, where a is the minimum distance between the curves y = ex and y = logex. Then ${a^2} + {1 \over {{b^2}}}$ is equal to :
$ \alpha = \tan\left(\frac{5\pi}{16} \sin\left(2\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)\right)\right) $
$ \beta = \cos\left(\sin^{-1}\left(\frac{4}{5}\right) + \sec^{-1}\left(\frac{5}{3}\right)\right) $
where the inverse trigonometric functions take principal values.
Then, the equation whose roots are $ \alpha $ and $ \beta $ is :
If the absolute maximum value of the function $f(x)=\left(x^{2}-2 x+7\right) \mathrm{e}^{\left(4 x^{3}-12 x^{2}-180 x+31\right)}$ in the interval $[-3,0]$ is $f(\alpha)$, then :
The curve $y(x)=a x^{3}+b x^{2}+c x+5$ touches the $x$-axis at the point $\mathrm{P}(-2,0)$ and cuts the $y$-axis at the point $Q$, where $y^{\prime}$ is equal to 3 . Then the local maximum value of $y(x)$ is:
For any real number $x$, let $[x]$ denote the largest integer less than equal to $x$. Let $f$ be a real valued function defined on the interval $[-10,10]$ by $f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$Then the value of $\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$ is :
The slope of the tangent to a curve $C: y=y(x)$ at any point $(x, y)$ on it is $\dfrac{2e^{2x}-6e^{-x}+9}{2+9e^{-2x}}$.
If $C$ passes through the points $\left(0, \tfrac{1}{2}+\tfrac{\pi}{2\sqrt{2}}\right)$ and $\left(\alpha, \tfrac{1}{2}e^{2\alpha}\right)$, then $e^{\alpha}$ is equal to :
Let the locus of the centre $(\alpha,\beta)$, $\beta>0$, of the circle which touches the circle $x^2+(y-1)^2=1$ externally and also touches the $x$-axis be $L$. Then the area bounded by $L$ and the line $y=4$ is:
If the numbers appeared on the two throws of a fair six faced die are $\alpha$ and $\beta$, then the probability that $x^2 + \alpha x + \beta > 0$, for all $x \in \mathbb{R}$, is :
For $z \in \mathbb{C}$ if the minimum value of $\lvert z - 3\sqrt{2}\rvert + \lvert z - p\sqrt{2}i\rvert$ is $5\sqrt{2}$, then a value of $p$ is ________.
If the ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$ meets the line $\dfrac{x}{7} + \dfrac{y}{2\sqrt{6}} = 1$ on the $x$-axis and the line $\dfrac{x}{7} - \dfrac{y}{2\sqrt{6}} = 1$ on the $y$-axis, then the eccentricity of the ellipse is :
Let the foci of the ellipse $\dfrac{x^{2}}{16}+\dfrac{y^{2}}{7}=1$ and the hyperbola $\dfrac{x^{2}}{144}-\dfrac{y^{2}}{\alpha}=\dfrac{1}{25}$ coincide. Then the length of the latus rectum of the hyperbola is :
$2 \sin\!\left(\tfrac{\pi}{22}\right) \sin\!\left(\tfrac{3\pi}{22}\right) \sin\!\left(\tfrac{5\pi}{22}\right) \sin\!\left(\tfrac{7\pi}{22}\right) \sin\!\left(\tfrac{9\pi}{22}\right)$ is equal to :
Let $O$ be the origin and $A$ be the point $z_1 = 1 + 2i$. If $B$ is the point $z_2$, $\mathrm{Re}(z_2) < 0$, such that $OAB$ is a right-angled isosceles triangle with $OB$ as hypotenuse, then which of the following is NOT true?
If the system of linear equations
$8x + y + 4z = -2$
$x + y + z = 0$
$\lambda x - 3y = \mu$
has infinitely many solutions, then the distance of the point $(\lambda, \mu, -\tfrac{1}{2})$ from the plane $8x + y + 4z + 2 = 0$ is :
Consider two G.P.s: $2, 2^{2}, 2^{3}, \ldots$ (of $60$ terms) and $4, 4^{2}, 4^{3}, \ldots$ (of $n$ terms).
If the geometric mean of all the $60+n$ terms is $(2)^{\tfrac{225}{8}}$, then $\displaystyle \sum_{k=1}^{n} k(n-k)$ is equal to:
If the function $f(x) =
\begin{cases}
\dfrac{\log_e(1 - x + x^{2}) + \log_e(1 + x + x^{2})}{\sec x - \cos x}, & x \in \left( -\tfrac{\pi}{2}, \tfrac{\pi}{2} \right) \setminus \{0\} \\
k, & x = 0
\end{cases}$
is continuous at $x=0$, then $k$ is equal to:
Let $f(x)=
\begin{cases}
x^{3}-x^{2}+10x-7, & x\le 1,\\
-2x+\log_{2}(b^{2}-4), & x>1.
\end{cases}$
Then the set of all values of $b$ for which $f(x)$ has maximum value at $x=1$ is:
A point $P$ moves so that the sum of squares of its distances from the points $(1,2)$ and $(-2,1)$ is $14$.
Let $f(x,y)=0$ be the locus of $P$, which intersects the $x$-axis at the points $A,B$ and the $y$-axis at the points $C,D$.
Then the area of the quadrilateral $ACBD$ is equal to: