Let X be a random variable such that the probability function of a distribution is given by $P(X = 0) = {1 \over 2},P(X = j) = {1 \over {{3^j}}}(j = 1,2,3,...,\infty )$. Then the mean of the distribution and P(X is positive and even) respectively are :
Let y = y(x) be the solution of the differential equation xdy = (y + x3 cosx)dx with y($\pi$) = 0, then $y\left( {{\pi \over 2}} \right)$ is equal to :
Let $\overrightarrow a = \widehat i + \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + 2\widehat j + 3\widehat k$. Then the vector product $\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\left( {\overrightarrow a \times \left( {\left( {\overrightarrow a - \overrightarrow b } \right) \times \overrightarrow b } \right)} \right) \times \overrightarrow b } \right)$ is equal to :
The value of the definite integral$ \int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{dx} \over {(1 + {e^{x\cos x}})({{\sin }^4}x + {{\cos }^4}x)}}} $ is equal to :
Let C be the set of all complex numbers. Let ${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $ ${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $ and ${S_3} = \{ z \in C||z - \overline z | \ge 8\} $. Then the number of elements in ${S_1} \cap {S_2} \cap {S_3}$ is equal to :
If the area of the bounded region $R = \left\{ {(x,y):\max \{ 0,{{\log }_e}x\} \le y \le {2^x},{1 \over 2} \le x \le 2} \right\}$ is , $\alpha {({\log _e}2)^{ - 1}} + \beta ({\log _e}2) + \gamma $, then the value of ${(\alpha + \beta - 2\lambda )^2}$ is equal to :
A ray of light through (2, 1) is reflected at a point P on the y-axis and then passes through the point (5, 3). If this reflected ray is the directrix of an ellipse with eccentricity ${1 \over 3}$ and the distance of the nearer focus from this directrix is ${8 \over {\sqrt {53} }}$, then the equation of the other directrix can be :
If the coefficients of x7 in ${\left( {{x^2} + {1 \over {bx}}} \right)^{11}}$ and x$-$7 in ${\left( {{x} - {1 \over {bx^2}}} \right)^{11}}$, b $\ne$ 0, are equal, then the value of b is equal to :
Let $f:\left( { - {\pi \over 4},{\pi \over 4}} \right) \to R$ be defined as $f(x) = \left\{ {\matrix{ {{{(1 + |\sin x|)}^{{{3a} \over {|\sin x|}}}}} & , & { - {\pi \over 4} < x < 0} \cr b & , & {x = 0} \cr {{e^{\cot 4x/\cot 2x}}} & , & {0 < x < {\pi \over 4}} \cr } } \right.$ If f is continuous at x = 0, then the value of 6a + b2 is equal to :
Let y = y(x) be solution of the differential equation ${\log _{}}\left( {{{dy} \over {dx}}} \right) = 3x + 4y$, with y(0) = 0.If $y\left( { - {2 \over 3}{{\log }_e}2} \right) = \alpha {\log _e}2$, then the value of $\alpha$ is equal to :
Let f : R $\to$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$ is equal to :
Let a, b$ \in $R. If the mirror image of the point P(a, 6, 9) with respect to the line ${{x - 3} \over 7} = {{y - 2} \over 5} = {{z - 1} \over { - 9}}$ is (20, b, $-$a$-$9), then | a + b |, is equal to :
Let f(x) be a differentiable function defined on [0, 2] such that f'(x) = f'(2 $-$ x) for all x$ \in $ (0, 2), f(0) = 1 and f(2) = e2. Then the value of $\int\limits_0^2 {f(x)} dx$ is :
Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f'(x) $ \ne $ 0 for all x $ \in $ R. If $\left| {\matrix{ {f(x)} & {f'(x)} \cr {f'(x)} & {f''(x)} \cr } } \right|$ = 0, for all x$ \in $R, then the value of f(1) lies in the interval :
Let $\mathbb{N}$ be the set of natural numbers and a relation $R$ on $\mathbb{N}$ be defined by
\[
R=\{(x,y)\in \mathbb{N}\times \mathbb{N} : x^{3}-3x^{2}y-xy^{2}+3y^{3}=0\}.
\]
Then the relation $R$ is:
Consider a circle C which touches the y-axis at (0, 6) and cuts off an intercept $6\sqrt 5 $ on the x-axis. Then the radius of the circle C is equal to :
Let y = y(x) be a solution curve of the differential equation $(y + 1){\tan ^2}x\,dx + \tan x\,dy + y\,dx = 0$, $x \in \left( {0,{\pi \over 2}} \right)$. If $\mathop {\lim }\limits_{x \to 0 + } xy(x) = 1$, then the value of $y\left( {{\pi \over 4}} \right)$ is :
The mean and standard deviation of 20 observations were calculated as 10 and 2.5 respectively. It was found that by mistake one data value was taken as 25 instead of 35. if $\alpha$ and $\sqrt \beta $ are the mean and standard deviation respectively for correct data, then ($\alpha$, $\beta$) is :
Let A and B be independent events such that P(A) = p, P(B) = 2p. The largest value of p, for which P (exactly one of A, B occurs) = ${5 \over 9}$, is :
Let $\theta \in \left( {0,{\pi \over 2}} \right)$. If the system of linear equations $(1 + {\cos ^2}\theta )x + {\sin ^2}\theta y + 4\sin 3\,\theta z = 0$, ${\cos ^2}\theta x + (1 + {\sin ^2}\theta )y + 4\sin 3\,\theta z = 0$, ${\cos ^2}\theta x + {\sin ^2}\theta y + (1 + 4\sin 3\,\theta )z = 0,$ has a non-trivial solution, then the value of $\theta$ is :
Let f : R $\to$ R be defined as$f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$ where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $\lambda$ + $\mu$ is equal to :
Out of all the patients in a hospital 89% are found to be suffering from heart ailment and 98% are suffering from lungs infection. If K% of them are suffering from both ailments, then K can not belong to the set :
If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point ($-$30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is :
If b is very small as compared to the value of a, so that the cube and other higher powers of ${b \over a}$ can be neglected in the identity ${1 \over {a - b}} + {1 \over {a - 2b}} + {1 \over {a - 3b}} + ..... + {1 \over {a - nb}} = \alpha n + \beta {n^2} + \gamma {n^3}$, then the value of $\gamma$ is :
Let y = y(x) be the solution of the differential equation ${{dy} \over {dx}} = 1 + x{e^{y - x}}, - \sqrt 2 < x < \sqrt 2 ,y(0) = 0$ then, the minimum value of $y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$ is equal to :
Let g : N $\to$ N be defined as g(3n + 1) = 3n + 2, g(3n + 2) = 3n + 3, g(3n + 3) = 3n + 1, for all n $\ge$ 0. Then which of the following statements is true?
Let [t] denote the greatest integer less than or equal to t. Let f(x) = x $-$ [x], g(x) = 1 $-$ x + [x], and h(x) = min{f(x), g(x)}, x $\in$ [$-$2, 2]. Then h is :
Let $f:[0,\infty ) \to [0,\infty )$ be defined as $f(x) = \int_0^x {[y]dy} $ where [x] is the greatest integer less than or equal to x. Which of the following is true?
Let 9 distinct balls be distributed among 4 boxes, B1, B2, B3 and B4. If the probability than B3 contains exactly 3 balls is $k{\left( {{3 \over 4}} \right)^9}$ then k lies in the set :
If the value of the integral $\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta } $, where $\alpha$, $\beta$ $\in$ R, 5$\alpha$ + 6$\beta$ = 0, and [x] denotes the greatest integer less than or equal to x; then the value of ($\alpha$ + $\beta$)2 is equal to :
Let an ellipse $E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$, ${a^2} > {b^2}$, passes through $\left( {\sqrt {{3 \over 2}} ,1} \right)$ and has eccentricity ${1 \over {\sqrt 3 }}$. If a circle, centered at focus F($\alpha$$, 0), $\alpha$$ > 0, of E and radius ${2 \over {\sqrt 3 }}$, intersects E at two points P and Q, then PQ2 is equal to :
A function f(x) is given by $f(x) = {{{5^x}} \over {{5^x} + 5}}$, then the sum of the series $f\left( {{1 \over {20}}} \right) + f\left( {{2 \over {20}}} \right) + f\left( {{3 \over {20}}} \right) + ....... + f\left( {{{39} \over {20}}} \right)$ is equal to :
Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions form the set A to the set A $\times$ B. Then :
The integral $\int {{{{e^{3{{\log }_e}2x}} + 5{e^{2{{\log }_e}2x}}} \over {{e^{4{{\log }_e}x}} + 5{e^{3{{\log }_e}x}} - 7{e^{2{{\log }_e}x}}}}} dx$, x > 0, is equal to : (where c is a constant of integration)
Two fair dice are thrown. The numbers on them are taken as $\lambda$ and $\mu$, and a system of linear equations, x + y + z = 5, x + 2y + 3z = $\mu$ ,x + 3y + $\lambda$z = 1, is constructed. If p is the probability that the system has a unique solution and q is the probability that the system has no solution, then :
Let A be a set of all 4-digit natural numbers whose exactly one digit is 7. Then the probability that a randomly chosen element of A leaves remainder 2 when divided by 5 is :
Let $\alpha$ and $\beta$ be the roots of x2 $-$ 6x $-$ 2 = 0. If an = $\alpha$$n $-$ $\beta$n for n $ \ge $ 1, then the value of ${{{a_{10}} - 2{a_8}} \over {3{a_9}}}$ is :
A circle C touches the line x = 2y at the point (2, 1) and intersects the circle C1 : x2 + y2 + 2y $-$ 5 = 0 at two points P and Q such that PQ is a diameter of C1. Then the diameter of C is :
Let A be a 3 $\times$ 3 matrix with det(A) = 4. Let Ri denote the ith row of A. If a matrix B is obtained by performing the operation R2 $ \to $ 2R2 + 5R3 on 2A, then det(B) is equal to :
If $\alpha$, $\beta$ $\in$ R are such that 1 $-$ 2i (here i2 = $-$1) is a root of z2 + $\alpha$z + $\beta$ = 0, then ($\alpha$ $-$ $\beta$) is equal to :
Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point P of MC is :
In a group of 400 people, 160 are smokers and non-vegetarian; 100 are smokers and vegetarian and the remaining 140 are non-smokers and vegetarian. Their chances of getting a particular chest disorder are 35%, 20% and 10% respectively. A person is chosen from the group at random and is found to be suffering from the chest disorder. The probability that the selected person is a smoker and non-vegetarian is :
If for the matrix, $A = \left[ {\matrix{ 1 & { - \alpha } \cr \alpha & \beta \cr } } \right]$, $A{A^T} = {I_2}$, then the value of ${\alpha ^4} + {\beta ^4}$ is :
et y = y(x) be the solution of the differential equation ${{dy} \over {dx}} = 2(y + 2\sin x - 5)x - 2\cos x$ such that y(0) = 7. Then y($\pi$) is equal to :
Let us consider a curve, y = f(x) passing through the point ($-$2, 2) and the slope of the tangent to the curve at any point (x, f(x)) is given by f(x) + xf'(x) = x2. Then :
A hyperbola passes through the foci of the ellipse ${{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities is one, then the equation of the hyperbola is :
When a certain biased die is rolled, a particular face occurs with probability ${1 \over 6} - x$ and its opposite face occurs with probability ${1 \over 6} + x$. All other faces occur with probability ${1 \over 6}$. Note that opposite faces sum to 7 in any die. If 0 < x < ${1 \over 6}$, and the probability of obtaining total sum = 7, when such a die is rolled twice, is ${13 \over 96}$, then the value of x is :
The maximum value of the term independent of 't' in the expansion of ${\left( {t{x^{{1 \over 5}}} + {{{{(1 - x)}^{{1 \over {10}}}}} \over t}} \right)^{10}}$ where x$\in$(0, 1) is :
Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A2 is 1, then the possible number of such matrices is :
A wire of length 20 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a regular hexagon. Then the length of the side (in meters) of the hexagon, so that the combined area of the square and the hexagon is minimum, is :
Let $A = \left( {\matrix{ {[x + 1]} & {[x + 2]} & {[x + 3]} \cr {[x]} & {[x + 3]} & {[x + 3]} \cr {[x]} & {[x + 2]} & {[x + 4]} \cr } } \right)$, where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval :
Let M and m respectively be the maximum and minimum values of the function f(x) = tan$-$1 (sin x + cos x) in $\left[ {0,{\pi \over 2}} \right]$, then the value of tan(M $-$ m) is equal to :
If the solution curve of the differential equation (2x $-$ 10y3)dy + ydx = 0, passes through the points (0, 1) and (2, $\beta$), then $\beta$ is a root of the equation :
Let [$\lambda$] be the greatest integer less than or equal to $\lambda$. The set of all values of $\lambda$ for which the system of linear equations x + y + z = 4, 3x + 2y + 5z = 3, 9x + 4y + (28 + [$\lambda$])z = [$\lambda$] has a solution is :
A box open from top is made from a rectangular sheet of dimension a x b by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to :
The set of all values of K > $-$1, for which the equation ${(3{x^2} + 4x + 3)^2} - (k + 1)(3{x^2} + 4x + 3)(3{x^2} + 4x + 2) + k{(3{x^2} + 4x + 2)^2} = 0$ has real roots, is :
Let Z be the set of all integers,$A = \{ (x,y) \in Z \times Z:{(x - 2)^2} + {y^2} \le 4\} $, $B = \{ (x,y) \in Z \times Z:{x^2} + {y^2} \le 4\} $, $C = \{ (x,y) \in Z \times Z:{(x - 2)^2} + {(y - 2)^2} \le 4\} $, If the total number of relation from A $\cap$ B to A $\cap$ C is 2p, then the value of p is :
The rate of growth of bacteria in a culture is proportional to the number of bacteria present and the bacteria count is 1000 at initial time t = 0. The number of bacteria is increased by 20% in 2 hours. If the population of bacteria is 2000 after ${k \over {{{\log }_e}\left( {{6 \over 5}} \right)}}$ hours, then ${\left( {{k \over {{{\log }_e}2}}} \right)^2}$ is equal to :
In an increasing geometric series, the sum of the second and the sixth term is ${{25} \over 2}$ and the product of the third and fifth term is 25. Then, the sum of 4th, 6th and 8th terms is equal to :
If $y(x)=\cot^{-1}\!\left(\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right),\; x\in\left(\tfrac{\pi}{2},\pi\right)$, then $\dfrac{dy}{dx}$ at $x=\tfrac{5\pi}{6}$ is:
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$ equals :
Let A(1, 4) and B(1, $-$5) be two points. Let P be a point on the circle (x $-$ 1)2 + (y $-$ 1)2 = 1 such that (PA)2 + (PB)2 have maximum value, then the points, P, A and B lie on :
Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\mathop {\lim }\limits_{x \to a} {{xf(a) - af(x)} \over {x - a}}$ equals :
Consider the following system of equations : x + 2y $-$ 3z = a 2x + 6y $-$ 11z = bx $-$ 2y + 7z = c, where a, b and c are real constants. Then the system of equations :
A natural number has prime factorization given by n = 2x3y5z, where y and z are such that y + z = 5 and y$-$1 + z$-$1 = ${5 \over 6}$, y > z. Then the number of odd divisions of n, including 1, is :
Let $A = \{ 1,2,3,....,10\} $ and $$f:A \to A$$ be defined as $f(k) = \left\{ {\matrix{ {k + 1} & {if\,k\,is\,odd} \cr k & {if\,k\,is\,even} \cr } } \right. $ Then the number of possible functions $g:A \to A$ such that $gof = f$ is :
Let A1 be the area of the region bounded by the curves y = sinx, y = cosx and y-axis in the first quadrant. Also, let A2 be the area of the region bounded by the curves y = sinx, y = cosx, x-axis and x = ${\pi \over 2}$ in the first quadrant. Then,
Let $f(x) = {\sin ^{ - 1}}x$ and $g(x) = {{{x^2} - x - 2} \over {2{x^2} - x - 6}}$. If $g(2) = \mathop {\lim }\limits_{x \to 2} g(x)$, then the domain of the function fog is :
Let f : R $ \to $ R be defined as $f(x) = \left\{ \matrix{ 2\sin \left( { - {{\pi x} \over 2}} \right),if\,x < - 1 \hfill \cr |a{x^2} + x + b|,\,if - 1 \le x \le 1 \hfill \cr \sin (\pi x),\,if\,x > 1 \hfill \cr} \right.$ If f(x) is continuous on R, then a + b equals :
If the locus of the mid-point of the line segment from the point (3, 2) to a point on the circle, x2 + y2 = 1 is a circle of radius r, then r is equal to :
If vectors $\overrightarrow {{a_1}} = x\widehat i - \widehat j + \widehat k$ and $\overrightarrow {{a_2}} = \widehat i + y\widehat j + z\widehat k$ are collinear, then a possible unit vector parallel to the vector $x\widehat i + y\widehat j + z\widehat k$ is :
Let a vector $\alpha \widehat i + \beta \widehat j$ be obtained by rotating the vector $\sqrt 3 \widehat i + \widehat j$ by an angle 45$^\circ$ about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices ($\alpha$, $\beta$), (0, $\beta$) and (0, 0) is equal to :
Let the position vectors of two points P and Q be 3$\widehat i$ $-$ $\widehat j$ + 2$\widehat k$ and $\widehat i$ + 2$\widehat j$ $-$ 4$\widehat k$, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are (4, $-$1, 2) and ($-$2, 1, $-$2), respectively. Let lines PR and QS intersect at T. If the vector $\overrightarrow {TA} $ is perpendicular to both $\overrightarrow {PR} $ and $\overrightarrow {QS} $ and the length of vector $\overrightarrow {TA} $ is $\sqrt 5 $ units, then the modulus of a position vector of A is :
Let a complex number z, |z| $\ne$ 1, satisfy ${\log _{{1 \over {\sqrt 2 }}}}\left( {{{|z| + 11} \over {{{(|z| - 1)}^2}}}} \right) \le 2$. Then, the largest value of |z| is equal to ____________.
The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, ${{{x^2}} \over 9} - {{{y^2}} \over {16}} = 1$ is :
Let the functions f : R $ \to $ R and g : R $ \to $ R be defined as :$f(x) = \left\{ {\matrix{ {x + 2,} & {x < 0} \cr {{x^2},} & {x \ge 0} \cr } } \right.$ and $g(x) = \left\{ {\matrix{ {{x^3},} & {x < 1} \cr {3x - 2,} & {x \ge 1} \cr } } \right.$ Then, the number of points in R where (fog) (x) is NOT differentiable is equal to :
Consider three observations a, b, and c such that b = a + c. If the standard deviation of a + 2, b + 2, c + 2 is d, then which of the following is true?
The range of a$\in$R for which the function f(x) = (4a $-$ 3)(x + loge 5) + 2(a $-$ 7) cot$\left( {{x \over 2}} \right)$ sin2$\left( {{x \over 2}} \right)$, x $\ne$ 2n$\pi$, n$\in$N has critical points, is :
If for x $\in$ $\left( {0,{\pi \over 2}} \right)$, log10sinx + log10cosx = $-$1 and log10(sinx + cosx) = ${1 \over 2}$(log10 n $-$ 1), n > 0, then the value of n is equal to :
A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :
If y = y(x) is the solution of the differential equation, ${{dy} \over {dx}} + 2y\tan x = \sin x,y\left( {{\pi \over 3}} \right) = 0$, then the maximum value of the function y(x) over R is equal to:
If y = y(x) is the solution of the differential equation ${{dy} \over {dx}}$ + (tan x) y = sin x, $0 \le x \le {\pi \over 3}$, with y(0) = 0, then $y\left( {{\pi \over 4}} \right)$ equal to :
Let f be a real valued function, defined on R $-$ {$-$1, 1} and given by f(x) = 3 loge $\left| {{{x - 1} \over {x + 1}}} \right| - {2 \over {x - 1}}$. Then in which of the following intervals, function f(x) is increasing?
If the foot of the perpendicular from point (4, 3, 8) on the line ${L_1}:{{x - a} \over l} = {{y - 2} \over 3} = {{z - b} \over 4}$, l $\ne$ 0 is (3, 5, 7), then the shortest distance between the line L1 and line ${L_2}:{{x - 2} \over 3} = {{y - 4} \over 4} = {{z - 5} \over 5}$ is equal to :
Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments AB, CD, BC, DA respectively. Let $\alpha$ be the number of triangles having these points from different sides as vertices and $\beta$ be the number of quadrilaterals having these points from different sides as vertices. Then ($\beta$ $-$ $\alpha$) is equal to :
Let f : S $ \to $ S where S = (0, $\infty $) be a twice differentiable function such that f(x + 1) = xf(x). If g : S $ \to $ R be defined as g(x) = loge f(x), then the value of |g''(5) $-$ g''(1)| is equal to :
Consider the integral $I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx} $, where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :
Let P(x) = x2 + bx + c be a quadratic polynomial with real coefficients such that $\int_0^1 {P(x)dx} $ = 1 and P(x) leaves remainder 5 when it is divided by (x $-$ 2). Then the value of 9(b + c) is equal to :
Let A = {2, 3, 4, 5, ....., 30} and '$ \simeq $' be an equivalence relation on A $\times$ A, defined by (a, b) $ \simeq $ (c, d), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :
The least value of |z| where z is complex number which satisfies the inequality $\exp \left( {{{(|z| + 3)(|z| - 1)} \over {||z| + 1|}}{{\log }_e}2} \right) \ge {\log _{\sqrt 2 }}|5\sqrt 7 + 9i|,i = \sqrt { - 1} $, is equal to :
Let $\alpha$ $\in$ R be such that the function $f(x) = \left\{ {\matrix{ {{{{{\cos }^{ - 1}}(1 - {{\{ x\} }^2}){{\sin }^{ - 1}}(1 - \{ x\} )} \over {\{ x\} - {{\{ x\} }^3}}},} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ is continuous at x = 0, where {x} = x $-$ [ x ] is the greatest integer less than or equal to x. Then :
Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy ${\sin ^{ - 1}}\left( {{{3x} \over 5}} \right) + {\sin ^{ - 1}}\left( {{{4x} \over 5}} \right) = {\sin ^{ - 1}}x$ is equal to :
Let the lengths of intercepts on x-axis and y-axis made by the circle x2 + y2 + ax + 2ay + c = 0, (a < 0) be 2${\sqrt 2 }$ and 2${\sqrt 5 }$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to :
Let A($-$1, 1), B(3, 4) and C(2, 0) be given three points. A line y = mx, m > 0, intersects lines AC and BC at point P and Q respectively. Let A1 and A2 be the areas of $\Delta$ABC and $\Delta$PQC respectively, such that A1 = 3A2, then the value of m is equal to :
Let A denote the event that a 6-digit integer formed by 0, 1, 2, 3, 4, 5, 6 without repetitions, be divisible by 3. Then probability of event A is equal to :
In a triangle PQR, the co-ordinates of the points P and Q are ($-$2, 4) and (4, $-$2) respectively. If the equation of the perpendicular bisector of PR is 2x $-$ y + 2 = 0, then the centre of the circumcircle of the $\Delta $PQR is :
The value of $\mathop {\lim }\limits_{x \to {0^ + }} {{{{\cos }^{ - 1}}(x - {{[x]}^2}).{{\sin }^{ - 1}}(x - {{[x]}^2})} \over {x - {x^3}}}$, where [ x ] denotes the greatest integer $ \le $ x is :
Which of the following statements is correct for the function g($\alpha$) for $\alpha$ $\in$ R such that $g(\alpha ) = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{{{\sin }^\alpha }x} \over {{{\cos }^\alpha }x + {{\sin }^\alpha }x}}dx} $
Two dies are rolled. If both dices have six faces numbered 1, 2, 3, 5, 7 and 11, then the probability that the sum of the numbers on the top faces is less than or equal to 8 is :
In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement?
Team 'A' consists of 7 boys and n girls and Team 'B' has 4 boys and 6 girls. If a total of 52 single matches can be arranged between these two teams when a boy plays against a boy and a girl plays against a girl, then n is equal to :
If the sides AB, BC and CA of a triangle ABC have 3, 5 and 6 interior points respectively, then the total number of triangles that can be constructed using these points as vertices, is equal to :
Let a computer program generate only the digits 0 and 1 to form a string of binary numbers with probability of occurrence of 0 at even places be ${1 \over 2}$ and probability of occurrence of 0 at the odd place be ${1 \over 3}$. Then the probability that '10' is followed by '01' is equal to :
Let f : R $ \to $ R be defined as f(x) = e$-$xsinx. If F : [0, 1] $ \to $ R is a differentiable function with that F(x) = $\int_0^x {f(t)dt} $, then the value of $\int_0^1 {(F'(x) + f(x)){e^x}dx} $ lies in the interval
If $\int {{{\cos x - \sin x} \over {\sqrt {8 - \sin 2x} }}} dx = a{\sin ^{ - 1}}\left( {{{\sin x + \cos x} \over b}} \right) + c$, where c is a constant of integration, thenthe ordered pair (a, b) is equal to :
Let $S_1, S_2$ and $S_3$ be three sets defined as
$S_1 = \{z \in C : |z - 1| \le \sqrt{2}\}$
,$S_2 = \{z \in C : \text{Re}((1 - i)z) \ge 1\}$
$S_3 = \{z \in C : \text{Im}(z) \le 1\}$
Then the set $S_1 \cap S_2 \cap S_3$
If f : R $ \to $ R is a function defined by f(x)= [x - 1] $\cos \left( {{{2x - 1} \over 2}} \right)\pi $, where [.] denotes the greatestinteger function, then f is :
The number of solutions of the equation ${\sin ^{ - 1}}\left[ {{x^2} + {1 \over 3}} \right] + {\cos ^{ - 1}}\left[ {{x^2} - {2 \over 3}} \right] = {x^2}$, for x$\in$[$-$1, 1], and [x] denotes the greatest integer less than or equal to x, is :
The population P = P(t) at time 't' of a certain species follows the differential equation ${{dP} \over {dt}}$ = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is :
If the curve y = y(x) is the solution of the differential equation $2({x^2} + {x^{5/4}})dy - y(x + {x^{1/4}})dx = {2x^{9/4}}dx$, x > 0 which passes through the point $\left( {1,1 - {4 \over 3}{{\log }_e}2} \right)$, then the value of y(16) is equal to :
Let $f : R → R$ be defined as $f (x) = 2x – 1$ and $g : R - {1} → R$ be defined as g(x) =${{x - {1 \over 2}} \over {x - 1}}$.Then the composition function $f(g(x))$ is :
Let O be the origin. Let $\overrightarrow{OP} = x\widehat i + y\widehat j - \widehat k$ and $\overrightarrow{OQ} = -\widehat i + 2\widehat j + 3x\widehat k$, $x, y \in R, x > 0$, be such that $|\overrightarrow{PQ}| = \sqrt{20}$ and the vector $\overrightarrow{OP}$ is perpendicular $\overrightarrow{OQ}$. If $\overrightarrow{OR} = 3\widehat i + z\widehat j - 7\widehat k$, $z \in R$, is coplanar with $\overrightarrow{OP}$ and $\overrightarrow{OQ}$, then the value of $x^2 + y^2 + z^2$ is equal to :
$ \text{If } \displaystyle \int_{0}^{10}\frac{[\sin 2\pi x]}{e^{,x-[x]}},dx ;=; \alpha e^{-1}+\beta e^{-1/2}+\gamma,\ \text{ where } \alpha,\beta,\gamma \text{ are integers and } [x] \text{ is the greatest integer } \le x,\ \text{then the value of } \alpha+\beta+\gamma \text{ is:} $
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed, is :
A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes is $\frac{1}{4}$ . Three stones A, B and C are placed at the points (1, 1), (2, 2) and (4, 4) respectively. Then, which of these stones is / are on the path of the man?
The value of $\mathop {\lim }\limits_{n \to \infty } {{[r] + [2r] + ... + [nr]} \over {{n^2}}}$, where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :
If x, y, z are in arithmetic progression with common difference d, x $\ne$ 3d, and the determinant of the matrix $\left[ {\matrix{ 3 & {4\sqrt 2 } & x \cr 4 & {5\sqrt 2 } & y \cr 5 & k & z \cr } } \right]$ is zero, then the value of k2 is :
Let y = y(x) be the solution of the differential equation $\cos x(3\sin x + \cos x + 3)dy = (1 + y\sin x(3\sin x + \cos x + 3))dx,0 \le x \le {\pi \over 2},y(0) = 0$. Then, $y\left( {{\pi \over 3}} \right)$ is equal to :
The locus of the mid-point of the line segment joining the focus of the parabola y2 = 4ax to a moving point of the parabola, is another parabola whose directrix is :
Let $\alpha, \beta, \gamma$ be the real roots of the equation $x^3 + ax^2 + bx + c = 0$, $(a, b, c \in \mathbb{R} \text{ and } a, b \ne 0)$. If the system of equations (in $u, v, w$) given by $\alpha u + \beta v + \gamma w = 0$, $\beta u + \gamma v + \alpha w = 0$, $\gamma u + \alpha v + \beta w = 0$ has non-trivial solution, then the value of $\dfrac{a^2}{b}$ is:
The integral $\int {{{(2x - 1)\cos \sqrt {{{(2x - 1)}^2} + 5} } \over {\sqrt {4{x^2} - 4x + 6} }}} dx$ is equal to (where c is a constant of integration)
The equation of one of the straight lines which passes through the point (1, 3) and makes an angles ${\tan ^{ - 1}}\left( {\sqrt 2 } \right)$ with the straight line, y + 1 = 3${\sqrt 2 }$ x is :
A vector $\overrightarrow a $ has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, $\overrightarrow a $ has components p + 1 and $\sqrt {10} $, then the value of p is equal to :
If the equation $a|z{|^2} + \overline {\overline \alpha z + \alpha \overline z } + d = 0$ represents a circle where a, d are real constants then which of the following condition is correct?
For the four circles M, N, O and P, following four equations are given :Circle M : x2 + y2 = 1, Circle N : x2 + y2 $-$ 2x = 0 ,Circle O : x2 + y2 $-$ 2x $-$ 2y + 1 = 0, Circle P : x2 + y2 $-$ 2y = 0
If the centre of circle M is joined with centre of the circle N, further center of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a :
The real valued function $f(x) = {{\cos e{c^{ - 1}}x} \over {\sqrt {x - [x]} }}$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to :
If the functions are defined as $f(x) = \sqrt x $ and $g(x) = \sqrt {1 - x} $, then what is the common domain of the following functions :f + g, f $-$ g, f/g, g/f, g $-$ f where $(f \pm g)(x) = f(x) \pm g(x),(f/g)x = {{f(x)} \over {g(x)}}$
If $f(x) = \left\{ {\matrix{ {{1 \over {|x|}}} & {;\,|x|\, \ge 1} \cr {a{x^2} + b} & {;\,|x|\, < 1} \cr } } \right.$ is differentiable at every point of the domain, then the values of a and b are respectively :
Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} } $, $0 \le x \le 1$ and f(0) = 0, then $\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\int_0^x {f(t)dt} $ :
Let $\overrightarrow a $ and $\overrightarrow b $ be two vectors such that $\left| {2\overrightarrow a + 3\overrightarrow b } \right| = \left| {3\overrightarrow a + \overrightarrow b } \right|$ and the angle between $\overrightarrow a $ and $\overrightarrow b $ is 60$^\circ$. If ${1 \over 8}\overrightarrow a $ is a unit vector, then $\left| {\overrightarrow b } \right|$ is equal to :
Three numbers are in an increasing geometric progression with common ratio r. If the middle number is doubled, then the new numbers are in an arithmetic progression with common difference d. If the fourth term of GP is 3 r2, then r2 $-$ d is equal to :
Let the system of linear equations4x + $\lambda$y + 2z = 0 ,2x $-$ y + z = 0 , $\mu$x + 2y + 3z = 0, $\lambda$, $\mu$$\in$R. has a non-trivial solution. Then which of the following is true?
If p and q are the lengths of the perpendiculars from the origin on the lines,:- x cosec $\alpha$ $-$ y sec $\alpha$ = k cot 2$\alpha$ and, x sin$\alpha$ + y cos$\alpha$ = k sin2$\alpha$ respectively, then k2 is equal to :
Let $\overrightarrow a $ and $\overrightarrow b $ be two non-zero vectors perpendicular to each other and $|\overrightarrow a | = |\overrightarrow b |$. If $|\overrightarrow a \times \overrightarrow b | = |\overrightarrow a |$, then the angle between the vectors $\left( {\overrightarrow a + \overrightarrow b + \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)$ and ${\overrightarrow a }$ is equal to :
Let a complex number be w = 1 $-$ ${\sqrt 3 }$i. Let another complex number z be such that |zw| = 1 and arg(z) $-$ arg(w) = ${\pi \over 2}$. Then the area of the triangle with vertices origin, z and w is equal to :
The length of the latus rectum of a parabola, whose vertex and focus are on the positive x-axis at a distance R and S (> R) respectively from the origin, is :
Let \; f:\mathbb{R}\to\mathbb{R} \text{ be defined as}
\[
f(x) =
\begin{cases}
\dfrac{\sin\!\big((a+1)x\big)+\sin 2x}{2x}, & x<0 \\[8pt]
b, & x=0 \\[8pt]
\dfrac{\sqrt{x+bx^{3}}-\sqrt{x}}{b\,x^{5/2}}, & x>0
\end{cases}
\]
If f is continuous at x = 0, then the value of a + b is equal to :
Let g(x) = $\int_0^x {f(t)dt} $, where f is continuous function in [ 0, 3 ] such that ${1 \over 3}$ $ \le $ f(t) $ \le $ 1 for all t$\in$ [0, 1] and 0 $ \le $ f(t) $ \le $ ${1 \over 2}$ for all t$\in$ (1, 3]. The largest possible interval in which g(3) lies is :
Let in a series of 2n observations, half of them are equal to a and remaining half are equal to $-$a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of a2 + b2 is equal to :
In a triangle ABC, if $|\overrightarrow {BC} | = 8,|\overrightarrow {CA} | = 7,|\overrightarrow {AB} | = 10$, then the projection of the vector $\overrightarrow {AB} $ on $\overrightarrow {AC} $ is equal to :
Define a relation R over a class of n $\times$ n real matrices A and B as "ARB iff there exists a non-singular matrix P such that PAP$-$1 = B". Then which of the following is true?
If $\alpha$ + $\beta$ + $\gamma$ = 2$\pi$, then the system of equations :- x + (cos $\gamma$)y + (cos $beta$)z = 0,(cos $\gamma$)x + y + (cos $\alpha$)z = 0(cos $\beta$)x + (cos $\alpha$)y + z = 0 has :
Let the centroid of an equilateral triangle ABC be at the origin. Let one of the sides of the equilateral triangle be along the straight line x + y = 3. If R and r be the radius of circumcircle and incircle respectively of $\Delta$ABC, then (R + r) is equal to :
Let f : R $-$ {3} $ \to $ R $-$ {1} be defined by f(x) = ${{x - 2} \over {x - 3}}$.Let g : R $ \to $ R be given as g(x) = 2x $-$ 3. Then, the sum of all the values of x for which f$-$1(x) + g$-$1(x) = ${{13} \over 2}$ is equal to :
Let S1 be the sum of first 2n terms of an arithmetic progression. Let S2 be the sum of first 4n terms of the same arithmetic progression. If (S2 $-$ S1) is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to :
Let a be a positive real number such that $\int_0^a {{e^{x - [x]}}} dx = 10e - 9$ where [ x ] is the greatest integer less than or equal to x. Then a is equal to:
The mean of 6 distinct observations is 6.5 and their variance is 10.25. If 4 out of 6 observations are 2, 4, 5 and 7, then the remaining two observations are :
If ${{dy} \over {dx}} = {{{2^x}y + {2^y}{{.2}^x}} \over {{2^x} + {2^{x + y}}{{\log }_e}2}}$, y(0) = 0, then for y = 1, the value of x lies in the interval :
If $\alpha$ and $\beta$ are the distinct roots of the equation ${x^2} + {(3)^{1/4}}x + {3^{1/2}} = 0$, then the value of ${\alpha ^{96}}({\alpha ^{12}} - 1) + {\beta ^{96}}({\beta ^{12}} - 1)$ is equal to :
Let $A = \left[ {\matrix{ 2 & 3 \cr a & 0 \cr } } \right]$, a$\in$R be written as P + Q where P is a symmetric matrix and Q is skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to :
Let [ x ] denote the greatest integer $\le$ x, where x $\in$ R. If the domain of the real valued function $f(x) = \sqrt {{{\left| {[x]} \right| - 2} \over {\left| {[x]} \right| - 3}}} $ is ($-$ $\infty$, a) $]\cup$ [b, c) $\cup$ [4, $\infty$), a < b < c, then the value of a + b + c is :
Let a1, a2, a3, ..... be an A.P. If ${{{a_1} + {a_2} + .... + {a_{10}}} \over {{a_1} + {a_2} + .... + {a_p}}} = {{100} \over {{p^2}}}$, p $\ne$ 10, then ${{{a_{11}}} \over {{a_{10}}}}$ is equal to :
Let y = y(x) be the solution of the differential equation $x\tan \left( {{y \over x}} \right)dy = \left( {y\tan \left( {{y \over x}} \right) - x} \right)dx$, $ - 1 \le x \le 1$, $y\left( {{1 \over 2}} \right) = {\pi \over 6}$. Then the area of the region bounded by the curves x = 0, $x = {1 \over {\sqrt 2 }}$ and y = y(x) in the upper half plane is :
Let $A = [{a_{ij}}]$ be a 3 $\times$ 3 matrix, where ${a_{ij}} = \left\{ {\matrix{ 1 & , & {if\,i = j} \cr { - x} & , & {if\,\left| {i - j} \right| = 1} \cr {2x + 1} & , & {otherwise.} \cr } } \right.$ Let a function f : R $\to$ R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to:
Let y = y(x) be the solution of the differential equation ${e^x}\sqrt {1 - {y^2}} dx + \left( {{y \over x}} \right)dy = 0$, y(1) = $-$1. Then the value of (y(3))2 is equal to :
The mean and variance of 7 observations are 8 and 16 respectively. If two observations are 6 and 8, then the variance of the remaining 5 observations is :
Let 'a' be a real number such that the function f(x) = ax2 + 6x $-$ 15, x $\in$ R is increasing in $\left( { - \infty ,{3 \over 4}} \right)$ and decreasing in $\left( {{3 \over 4},\infty } \right)$. Then the function g(x) = ax2 $-$ 6x + 15, x$\in$R has a :
Let f : R $\to$ R be a continuous function. Then $\mathop {\lim }\limits_{x \to {\pi \over 4}} {{{\pi \over 4}\int\limits_2^{{{\sec }^2}x} {f(x)\,dx} } \over {{x^2} - {{{\pi ^2}} \over {16}}}}$ is equal to :
Let a function f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {\sin x - {e^x}} & {if} & {x \le 0} \cr {a + [ - x]} & {if} & {0 < x < 1} \cr {2x - b} & {if} & {x \ge 1} \cr } } \right.$ where [ x ] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:
Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is :
Consider the system of linear equations$-$x + y + 2z = 0 3x $-$ ay + 5z = 12x, $-$ 2y $-$ az = 7, Let S1 be the set of all a$\in$R for which the system is inconsistent and S2 be the set of all a$\in$R for which the system has infinitely many solutions. If n(S1) and n(S2) denote the number of elements in S1 and S2 respectively, then
If y = y(x) is the solution curve of the differential equation ${x^2}dy + \left( {y - {1 \over x}} \right)dx = 0$ ; x > 0 and y(1) = 1, then $y\left( {{1 \over 2}} \right)$ is equal to :
The function $f(x) = {x^3} - 6{x^2} + ax + b$ is such that $f(2) = f(4) = 0$. Consider two statements : Statement 1 : there exists x1, x2 $\in$(2, 4), x1 < x2, such that f'(x1) = $-$1 and f'(x2) = 0. Statement 2 : there exists x3, x4 $\in$ (2, 4), x3 < x4, such that f is decreasing in (2, x4), increasing in (x4, 4) and $2f'({x_3}) = \sqrt 3 f({x_4})$.Then
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $ is equal to :
If the real part of the complex number ${(1 - \cos \theta + 2i\sin \theta )^{ - 1}}$ is ${1 \over 5}$ for $\theta \in (0,\pi )$, then the value of the integral $\int_0^\theta {\sin x} dx$ is equal to:
Let $f:R - \left\{ {{\alpha \over 6}} \right\} \to R$ be defined by $f(x) = {{5x + 3} \over {6x - \alpha }}$. Then the value of $\alpha$ for which (fof)(x) = x, for all $x \in R - \left\{ {{\alpha \over 6}} \right\}$, is :
The numbers of pairs (a, b) of real numbers, such that whenever $\alpha$ is a root of the equation x2 + ax + b = 0, $\alpha$2 $-$ 2 is also a root of this equation, is :
Let A, B and C be three events such that the probability that exactly one of A and B occurs is (1 $-$ k), the probability that exactly one of B and C occurs is (1 $-$ 2k), the probability that exactly one of C and A occurs is (1 $-$ k) and the probability of all A, B and C occur simultaneously is k2, where 0 < k < 1. Then the probability that at least one of A, B and C occur is :
Let y = y(x) satisfies the equation ${{dy} \over {dx}} - |A| = 0$, for all x > 0, where $A = \left[ {\matrix{ y & {\sin x} & 1 \cr 0 & { - 1} & 1 \cr 2 & 0 & {{1 \over x}} \cr } } \right]$. If $y(\pi ) = \pi + 2$, then the value of $y\left( {{\pi \over 2}} \right)$ is :
Let a1, a2, ..........., a21 be an AP such that $\sum\limits_{n = 1}^{20} {{1 \over {{a_n}{a_{n + 1}}}} = {4 \over 9}} $. If the sum of this AP is 189, then a6a16 is equal to :
If the mean and variance of six observations 7, 10, 11, 15, a, b are 10 and ${{20} \over 3}$, respectively, then the value of | a $-$ b | is equal to :
Let $g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$, where $f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right),x \in R$. Then which one of the following is correct?
The value of k $\in$R, for which the following system of linear equations. 3x $-$ y + 4z = 3,x + 2y $-$ 3z = $-$2, 6x + 5y + kz = $-$3,has infinitely many solutions, is :
In a triangle ABC, if $\left| {\overrightarrow {BC} } \right| = 3$, $\left| {\overrightarrow {CA} } \right| = 5$ and $\left| {\overrightarrow {BA} } \right| = 7$, then the projection of the vector $\overrightarrow {BA} $ on $\overrightarrow {BC} $ is equal to :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ { - {4 \over 3}{x^3} + 2{x^2} + 3x,} & {x > 0} \cr {3x{e^x},} & {x \le 0} \cr } } \right.$. Then f is increasing function in the interval
Let y = y(x) be the solution of the differential equation $\cos e{c^2}xdy + 2dx = (1 + y\cos 2x)\cos e{c^2}xdx$, with $y\left( {{\pi \over 4}} \right) = 0$. Then, the value of ${(y(0) + 1)^2}$ is equal to :
Four dice are thrown simultaneously and the numbers shown on these dice are recorded in 2 $\times$ 2 matrices. The probability that such formed matrix have all different entries and are non-singular, is :
If $\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} \over {1 + 4{\pi ^2}}},\alpha \in R} $ where [x] is the greatest integer less than or equal to x, then the value of $\alpha$ is :
The values of $\lambda$ and $\mu$ such that the system of equations $x + y + z = 6$, $3x + 5y + 5z = 26$, $x + 2y + \lambda z = \mu $ has no solution, are :
If the shortest distance between the straight lines $3(x - 1) = 6(y - 2) = 2(z - 1)$ and $4(x - 2) = 2(y - \lambda ) = (z - 3),\lambda \in R$ is ${1 \over {\sqrt {38} }}$, then the integral value of $\lambda$ is equal to :
Let A = [aij] be a real matrix of order 3 $\times$ 3, such that ai1 + ai2 + ai3 = 1, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A3 is equal to :
Let [x] denote the greatest integer less than or equal to x. Then, the values of x$\in$R satisfying the equation ${[{e^x}]^2} + [{e^x} + 1] - 3 = 0$ lie in the interval :
Let the circle S : 36x2 + 36y2 $-$ 108x + 120y + C = 0 be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x $-$ 2y = 4 and 2x $-$ y = 5 lies inside the circle S, then :
Let n denote the number of solutions of the equation z2 + 3$\overline z $ = 0, where z is a complex number. Then the value of $\sum\limits_{k = 0}^\infty {{1 \over {{n^k}}}} $ is equal to :
If the domain of the function $f(x) = {{{{\cos }^{ - 1}}\sqrt {{x^2} - x + 1} } \over {\sqrt {{{\sin }^{ - 1}}\left( {{{2x - 1} \over 2}} \right)} }}$ is the interval ($\alpha$, $\beta$], then $\alpha$ + $\beta$ is equal to :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{{x^3}} \over {{{(1 - \cos 2x)}^2}}}{{\log }_e}\left( {{{1 + 2x{e^{ - 2x}}} \over {{{(1 - x{e^{ - x}})}^2}}}} \right),} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ If f is continuous at x = 0, then $\alpha$ is equal to :
Let ${E_1}:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,a > b$. Let E2 be another ellipse such that it touches the end points of major axis of E1 and the foci of E2 are the end points of minor axis of E1. If E1 and E2 have same eccentricities, then its value is :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$ where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $\lambda$ + $\mu$ is equal to :
If b is very small as compared to the value of a, so that the cube and other higher powers of ${b \over a}$ can be neglected in the identity ${1 \over {a - b}} + {1 \over {a - 2b}} + {1 \over {a - 3b}} + ..... + {1 \over {a - nb}} = \alpha n + \beta {n^2} + \gamma {n^3}$, then the value of $\gamma$ is :
Let y = y(x) be the solution of the differential equation ${{dy} \over {dx}} = 1 + x{e^{y - x}}, - \sqrt 2 < x < \sqrt 2 ,y(0) = 0$ then, the minimum value of $y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$ is equal to :
Let g : N $\to$ N be defined as g(3n + 1) = 3n + 2, g(3n + 2) = 3n + 3, g(3n + 3) = 3n + 1, for all n $\ge$ 0. Then which of the following statements is true?
Let $f:[0,\infty ) \to [0,\infty )$ be defined as $f(x) = \int_0^x {[y]dy} $ where [x] is the greatest integer less than or equal to x. Which of the following is true?
$f$ is continuous at every point in $[0, \infty)$ and differentiable except at the integer points.
$f$ is both continuous and differentiable except at the integer points in $[0, \infty)$.
$f$ is continuous everywhere except at the integer points in $[0, \infty)$.
$f$ is differentiable at every point in $[0, \infty)$.
Go to Discussion JEE MAIN JEE Mains PYQJEE MAIN JEE Main 2021 (25 July Morning Shift) PYQ
Let 9 distinct balls be distributed among 4 boxes, B1, B2, B3 and B4. If the probability than B3 contains exactly 3 balls is $k{\left( {{3 \over 4}} \right)^9}$ then k lies in the set :
Let an ellipse $E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$, ${a^2} > {b^2}$, passes through $\left( {\sqrt {{3 \over 2}} ,1} \right)$ and has eccentricity ${1 \over {\sqrt 3 }}$. If a circle, centered at focus F($\alpha$, 0), $\alpha$ > 0, of E and radius ${2 \over {\sqrt 3 }}$, intersects E at two points P and Q, then PQ2 is equal to :
The first of the two samples in a group has 100 items with mean 15 and standard deviation 3. If the whole group has 250 items with mean 15.6 and standard deviation $\sqrt {13.44} $, then the standard deviation of the second sample is :
If the greatest value of the term independent of 'x' in the expansion of ${\left( {x\sin \alpha + a{{\cos \alpha } \over x}} \right)^{10}}$ is ${{10!} \over {{{(5!)}^2}}}$, then the value of 'a' is equal to:
If $\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 5$ and $\left| {\overrightarrow a \times \overrightarrow b } \right|$ = 8, then $\left| {\overrightarrow a .\,\overrightarrow b } \right|$ is equal to :