Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Rectangular Cartesian Coordinates PYQ


CUET PG MCA PYQ
If the vertices of a triangle are O(0,0), A(a,0) and B(0,a). Then, the distance between its circumcenter and orthocenter is:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2022 PYQ

Solution


CUET PG MCA PYQ
The points $(K,2-2K)$, $(-K+1,2K)$ and $(-4-K,6-2K)$ are collinear if:

(A) $K=\frac{1}{2}$

(B) $K=\frac{-1}{2}$

(C) $K=\frac{3}{2}$

(D) $K=-1$

(E) $K=1$

Choose the correct answer from the options given below:






Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2025 PYQ

Solution

Given points: \[ P_1(K,2-2K), \quad P_2(1-K,2K), \quad P_3(-4-K,6-2K) \] These three points are collinear if the area of triangle formed by them is zero: \[ \Delta = \begin{vmatrix} K & 2-2K & 1\\ 1-K & 2K & 1\\ -4-K & 6-2K & 1 \end{vmatrix} = 0 \] Expanding determinant: \[ 8K^2 + 4K - 4 = 0 \;\;\Rightarrow\;\; 2K^2 + K - 1 = 0 \] Solving quadratic: \[ K = \frac{-1 \pm 3}{4} \;\;\Rightarrow\;\; K=\tfrac{1}{2},\; -1 \]

CUET PG MCA PYQ
If the vertices of a triangle are (1, 2), (2, 5) and (4, 3) then the area of the triangle is:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...