Given: Polynomial $$f(x) = 2x^2 - 5x + k$$ and $(x-1)$ is a factor.
Step 1: Apply factor theorem.
If $(x-1)$ is a factor, then $f(1) = 0$.
Step 2: Substitute $x=1$.
$$f(1) = 2(1)^2 - 5(1) + k = 2 - 5 + k = -3 + k$$
Step 3: Solve for $k$.
$$-3 + k = 0 \quad \Rightarrow \quad k = 3$$
Value of k: 3
Answer: Option 3
Given \(x^2+\dfrac{1}{x^2}=2\). Let \(t=x+\dfrac{1}{x}\). Then \(x^2+\dfrac{1}{x^2}=t^2-2\), so \(t^2-2=2 \Rightarrow t^2=4 \Rightarrow t=\pm2\).
From \(x+\dfrac{1}{x}=2 \Rightarrow x=1\) and from \(x+\dfrac{1}{x}=-2 \Rightarrow x=-1\).
Hence \(x^{256}+\dfrac{1}{x^{256}}= \begin{cases} 1+1=2,& x=1\\ (-1)^{256}+(-1)^{-256}=1+1=2,& x=-1 \end{cases}\).
Final Answer: \(2\).
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.