Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Quadratic Equations PYQ


CUET PG MCA PYQ
List I List II
A. Kailash Satyarthi I. Chemistry
B. Abhijit Banerjee II. Peace
C. Vinkatraman Ramakrishnan III. Physics
D. Subrahmanyan Chandrasekhar IV. Economics






Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

List I List II
A. Kailash Satyarthi II. Peace
B. Abhijit Banerjee IV. Economics
C. Venkatraman Ramakrishnan I. Chemistry
D. Subrahmanyan Chandrasekhar III. Physics

CUET PG MCA PYQ
List I List II
A. Dog : Rabies :: Mosquito : I. Bacteria
B. Amnesia : Memory :: Paralysis : II. Liver
C. Meningitis : Brain :: Cirrhosis : III. Movement
D. Influenza : Virus :: Typhoid : IV. Malaria






Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2023 PYQ

Solution

Dog causes Rabies, Mosquito causes Malaria → A-IV
Amnesia affects Memory, Paralysis affects Movement → B-III
Meningitis affects Brain, Cirrhosis affects Liver → C-II
Influenza is caused by Virus, Typhoid is caused by Bacteria → D-I

Correct matching: A-IV, B-III, C-II, D-I

CUET PG MCA PYQ
Given below are two statements:

Statement I: If the roots of the quadratic equation
$x^2 - 4x - \log_3 a = 0$ are real, then the least value of $a$ is $\dfrac{1}{81}$.

Statement II: The harmonic mean of the roots of the equation
$(5+\sqrt{2})x^2 - (4+\sqrt{5})x + (8+2\sqrt{5}) = 0$ is $2$.

In the light of the above statements, choose the correct answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

For Statement I:
For real roots, discriminant $\ge 0$
$(-4)^2 - 4(1)(-\log_3 a) \ge 0$
$16 + 4\log_3 a \ge 0$
$\log_3 a \ge -4$
$a \ge 3^{-4} = \dfrac{1}{81}$
So Statement I is true.

For Statement II:
Harmonic mean of roots $= \dfrac{2\alpha\beta}{\alpha+\beta}$
Here,
$\alpha+\beta = \dfrac{4+\sqrt{5}}{5+\sqrt{2}}$
$\alpha\beta = \dfrac{8+2\sqrt{5}}{5+\sqrt{2}}$

So,
HM $= \dfrac{2(8+2\sqrt{5})}{4+\sqrt{5}} = 4 \ne 2$

So Statement II is false.

CUET PG MCA PYQ
If every pair from among the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$ and $x^2 + rx + pq = 0$ has a common root, then the product of the three common roots is ______.





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

Let the common roots be $\alpha,\beta,\gamma$ respectively. From the first equation, common root $\alpha$ satisfies $\alpha^2 + p\alpha + qr = 0$ Similarly, $\alpha^2 + q\alpha + rp = 0$ Subtracting, $(p-q)\alpha + (qr-rp)=0$ $\Rightarrow (p-q)(\alpha - r)=0$ So $\alpha = r$. Similarly, $\beta = p$ and $\gamma = q$. Hence product of the three common roots $= pqr$

CUET PG MCA PYQ
If $x=(2+\sqrt{3})^{\frac{1}{3}}+(2+\sqrt{3})^{-\frac{1}{3}}$ and $x^{3}-3x+k=0$, then the value of k is:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2025 PYQ

Solution

Find k given \(x=(2+\sqrt{3})^{1/3}+(2+\sqrt{3})^{-1/3}\) and \(x^{3}-3x+k=0\)
  1. Let \(a=2+\sqrt{3}\Rightarrow a^{-1}=2-\sqrt{3}\). Define \(u^3=a,\;v^3=a^{-1}\) so that \(uv=\big(a\cdot a^{-1}\big)^{1/3}=1\) and \(x=u+v\).
  2. Use \((u+v)^3=u^3+v^3+3uv(u+v)\):
    \[ x^3=u^3+v^3+3uv(u+v)=(2+\sqrt{3})+(2-\sqrt{3})+3x=4+3x. \]
  3. Rearrange: \(\;x^3-3x-4=0\). Comparing with \(x^{3}-3x+k=0\) gives \(\;k=-4\).
Final answer: \(\boxed{k=-4}\)

CUET PG MCA PYQ
If (x -1) is a factor of $2x^2-5x +k = 0$, then the value of k is:
1. 2
2. 5
3. 3
4. 4





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2025 PYQ

Solution

Given: Polynomial $$f(x) = 2x^2 - 5x + k$$ and $(x-1)$ is a factor.

Step 1: Apply factor theorem.
If $(x-1)$ is a factor, then $f(1) = 0$.

Step 2: Substitute $x=1$.
$$f(1) = 2(1)^2 - 5(1) + k = 2 - 5 + k = -3 + k$$

Step 3: Solve for $k$.
$$-3 + k = 0 \quad \Rightarrow \quad k = 3$$


Value of k: 3

Answer: Option 3


CUET PG MCA PYQ
If ${x}^2+\frac{1}{{x}^2}=2$ then the value of ${x}^{256}+\frac{1}{{x}^{256}}$





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution

Given \(x^2+\dfrac{1}{x^2}=2\). Let \(t=x+\dfrac{1}{x}\). Then \(x^2+\dfrac{1}{x^2}=t^2-2\), so \(t^2-2=2 \Rightarrow t^2=4 \Rightarrow t=\pm2\).

From \(x+\dfrac{1}{x}=2 \Rightarrow x=1\) and from \(x+\dfrac{1}{x}=-2 \Rightarrow x=-1\).

Hence \(x^{256}+\dfrac{1}{x^{256}}= \begin{cases} 1+1=2,& x=1\\ (-1)^{256}+(-1)^{-256}=1+1=2,& x=-1 \end{cases}\).

Final Answer: \(2\).


CUET PG MCA PYQ
If the roots of the equation $x^2+4x+a^2-3a$ are real then the value of a (is / are)





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...