1
A-II, B-III, C-I, D-IV 2
A-III, B-IV, C-II, D-I 3
A-IV, B-III, C-II, D-I 4
A-IV, B-III, C-I, D-II Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2023 PYQ
Solution Dog causes Rabies, Mosquito causes Malaria → A-IV
Amnesia affects Memory, Paralysis affects Movement → B-III
Meningitis affects Brain, Cirrhosis affects Liver → C-II
Influenza is caused by Virus, Typhoid is caused by Bacteria → D-I
Correct matching: A-IV, B-III, C-II, D-I
Qus : 3
CUET PG MCA PYQ
3
Given below are two statements:
Statement I: If the roots of the quadratic equation
$x^2 - 4x - \log_3 a = 0$ are real, then the least value of $a$ is $\dfrac{1}{81}$.
Statement II: The harmonic mean of the roots of the equation
$(5+\sqrt{2})x^2 - (4+\sqrt{5})x + (8+2\sqrt{5}) = 0$ is $2$.
In the light of the above statements, choose the correct answer from the options given below:
1
Both Statement I and Statement II are true 2
Both Statement I and Statement II are false 3
Statement I is true but Statement II is false 4
Statement I is false but Statement II is true Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2023 PYQ
Solution For Statement I:
For real roots, discriminant $\ge 0$
$(-4)^2 - 4(1)(-\log_3 a) \ge 0$
$16 + 4\log_3 a \ge 0$
$\log_3 a \ge -4$
$a \ge 3^{-4} = \dfrac{1}{81}$
So Statement I is true.
For Statement II:
Harmonic mean of roots $= \dfrac{2\alpha\beta}{\alpha+\beta}$
Here,
$\alpha+\beta = \dfrac{4+\sqrt{5}}{5+\sqrt{2}}$
$\alpha\beta = \dfrac{8+2\sqrt{5}}{5+\sqrt{2}}$
So,
HM $= \dfrac{2(8+2\sqrt{5})}{4+\sqrt{5}} = 4 \ne 2$
So Statement II is false.
Qus : 4
CUET PG MCA PYQ
1
If every pair from among the equations
$x^2 + px + qr = 0$,
$x^2 + qx + rp = 0$ and
$x^2 + rx + pq = 0$
has a common root, then the product of the three common roots is ______.
1
$pqr$ 2
$2pqr$ 3
$p^2q^2r^2$ 4
$p^2qr^2$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2023 PYQ
Solution Let the common roots be $\alpha,\beta,\gamma$ respectively.
From the first equation, common root $\alpha$ satisfies
$\alpha^2 + p\alpha + qr = 0$
Similarly,
$\alpha^2 + q\alpha + rp = 0$
Subtracting,
$(p-q)\alpha + (qr-rp)=0$
$\Rightarrow (p-q)(\alpha - r)=0$
So $\alpha = r$.
Similarly, $\beta = p$ and $\gamma = q$.
Hence product of the three common roots
$= pqr$
Qus : 5
CUET PG MCA PYQ
1
If $x=(2+\sqrt{3})^{\frac{1}{3}}+(2+\sqrt{3})^{-\frac{1}{3}}$ and $x^{3}-3x+k=0$, then the value of k is:
1
-4 2
4 3
$\sqrt{3}$ 4
$2\sqrt{3}$ Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution Find
k given \(x=(2+\sqrt{3})^{1/3}+(2+\sqrt{3})^{-1/3}\) and \(x^{3}-3x+k=0\)
Let \(a=2+\sqrt{3}\Rightarrow a^{-1}=2-\sqrt{3}\). Define \(u^3=a,\;v^3=a^{-1}\) so that \(uv=\big(a\cdot a^{-1}\big)^{1/3}=1\) and \(x=u+v\).
Use \((u+v)^3=u^3+v^3+3uv(u+v)\):
\[
x^3=u^3+v^3+3uv(u+v)=(2+\sqrt{3})+(2-\sqrt{3})+3x=4+3x.
\]
Rearrange: \(\;x^3-3x-4=0\). Comparing with \(x^{3}-3x+k=0\) gives \(\;k=-4\).
Final answer: \(\boxed{k=-4}\)
Qus : 6
CUET PG MCA PYQ
3
If (x -1) is a factor of $2x^2-5x +k = 0$, then the value of k is:
1. 2
2. 5
3. 3
4. 4
1
1 2
2 3
3 4
4 Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2025 PYQ
Solution
Given: Polynomial
$$f(x) = 2x^2 - 5x + k$$
and $(x-1)$ is a factor.
Step 1: Apply factor theorem.
If $(x-1)$ is a factor, then $f(1) = 0$.
Step 2: Substitute $x=1$.
$$f(1) = 2(1)^2 - 5(1) + k = 2 - 5 + k = -3 + k$$
Step 3: Solve for $k$.
$$-3 + k = 0 \quad \Rightarrow \quad k = 3$$
Value of k: 3
Answer: Option 3
Qus : 7
CUET PG MCA PYQ
4
If ${x}^2+\frac{1}{{x}^2}=2$ then the value of ${x}^{256}+\frac{1}{{x}^{256}}$
1
1
2
0
3
-2
4
2
Go to Discussion
CUET PG MCA Previous Year PYQ
CUET PG MCA CUET 2024 PYQ
Solution
Given \(x^2+\dfrac{1}{x^2}=2\). Let \(t=x+\dfrac{1}{x}\). Then
\(x^2+\dfrac{1}{x^2}=t^2-2\), so \(t^2-2=2 \Rightarrow t^2=4 \Rightarrow t=\pm2\).
From \(x+\dfrac{1}{x}=2 \Rightarrow x=1\) and from \(x+\dfrac{1}{x}=-2 \Rightarrow x=-1\).
Hence \(x^{256}+\dfrac{1}{x^{256}}=
\begin{cases}
1+1=2,& x=1\\
(-1)^{256}+(-1)^{-256}=1+1=2,& x=-1
\end{cases}\).
Final Answer: \(2\).
[{"qus_id":"11694","year":"2024"},{"qus_id":"11702","year":"2024"},{"qus_id":"12099","year":"2025"},{"qus_id":"12195","year":"2025"},{"qus_id":"16652","year":"2023"},{"qus_id":"16659","year":"2023"},{"qus_id":"16695","year":"2023"},{"qus_id":"16658","year":"2023"}]
CUET PG MCA
Online Test Series, Information About Examination, Syllabus, Notification and More.
Click Here to View More
CUET PG MCA
Online Test Series, Information About Examination, Syllabus, Notification and More.
Click Here to View More
Are you sure to delete this comment ?
Please provide more information - at least 10 characters