Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Logarithms And Indices PYQ


CUET PG MCA PYQ
List I List II
A. Kailash Satyarthi I. Chemistry
B. Abhijit Banerjee II. Peace
C. Vinkatraman Ramakrishnan III. Physics
D. Subrahmanyan Chandrasekhar IV. Economics






Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

List I List II
A. Kailash Satyarthi II. Peace
B. Abhijit Banerjee IV. Economics
C. Venkatraman Ramakrishnan I. Chemistry
D. Subrahmanyan Chandrasekhar III. Physics

CUET PG MCA PYQ
The value of $; e^{\log 10 \tan 1^\circ + \log 10 \tan 2^\circ + \log 10 \tan 3^\circ + \cdots + \log 10 \tan 89^\circ} ;$ is





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

Using property: $\log a + \log b = \log(ab)$ So expression becomes: $e^{\log 10 \left(\tan 1^\circ \tan 2^\circ \cdots \tan 89^\circ\right)}$ Using identity: $\tan \theta \tan (90^\circ-\theta) = 1$ All terms cancel pairwise: $\tan 1^\circ \tan 89^\circ \cdot \tan 2^\circ \tan 88^\circ \cdots = 1$ Thus exponent becomes $\log 10 (1)=0$ So value $= e^0 = 1$

CUET PG MCA PYQ
Math List I with List II : $\omega \ne1$ is a cube root of unity.
 LIST I LIST II
A. $\log _4(\log _3(81))=$I. 0 
B. ${3}^{4\log _9(7)}={7}^k$, then k =II. 3 
C. ${2}^{\log _3(5)}-{5}^{\log _3(2)}=$ III. 1
D. $\log _2[\log _2(256)]=$IV. 2
Choose the correct answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2022 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...