Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Limit PYQ


CUET PG MCA PYQ
Match List-I with List-II
 List - I List-II
 (A)  $\lim_{x\to0}(1+2x)^{\frac{1}{x}}$ (I) $e^{6}$
 (B) $\lim_{x\to\infty}(1+\frac{1}{x})^{x}$
(II) $e^{2}$
 (C) $\lim_{x\to0}(1+5x)^{\frac{1}{x}}$ (III) $e$
 (D) $\lim_{x\to\infty}(1+\frac{3}{x})^{2x}$ (IV) $e^{5}$





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2025 PYQ

Solution

Key formulas: \[ \lim_{x\to 0}(1+ax)^{\frac{1}{x}}=e^{a},\qquad \lim_{x\to\infty}\left(1+\frac{c}{x}\right)^{kx}=e^{ck}. \] Evaluate each:
(A) \(\displaystyle \lim_{x\to0}(1+2x)^{\frac{1}{x}}=e^{2}\;\Rightarrow\;(II)\)
(B) \(\displaystyle \lim_{x\to\infty}\left(1+\frac{1}{x}\right)^{x}=e\;\Rightarrow\;(III)\)
(C) \(\displaystyle \lim_{x\to0}(1+5x)^{\frac{1}{x}}=e^{5}\;\Rightarrow\;(IV)\)
(D) \(\displaystyle \lim_{x\to\infty}\left(1+\frac{3}{x}\right)^{2x}=e^{3\cdot 2}=e^{6}\;\Rightarrow\;(I)\)

Matching: \[ (A)\!\to\!(II),\quad (B)\!\to\!(III),\quad (C)\!\to\!(IV),\quad (D)\!\to\!(I). \]

CUET PG MCA PYQ
The value of $\lim_{x\rightarrow\infty}(1+\frac{2}{3x})^{x}$ is:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2025 PYQ

Solution

We use the standard result: \[ \lim_{n \to \infty} \left(1 + \frac{k}{n}\right)^n = e^k \] Here, \(k = \tfrac{2}{3}\) and \(n = x\). \[ \therefore \;\; \lim_{x \to \infty} \left(1 + \frac{2}{3x}\right)^x = e^{\tfrac{2}{3}} \] Final Answer: \( e^{\tfrac{2}{3}} \)

CUET PG MCA PYQ
$$\lim _{{x}\rightarrow0}\frac{\sqrt[]{1-\cos 2x}}{x}$$





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...