Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Definite Integration PYQ


CUET PG MCA PYQ
List I List II
A. Dog : Rabies :: Mosquito : I. Bacteria
B. Amnesia : Memory :: Paralysis : II. Liver
C. Meningitis : Brain :: Cirrhosis : III. Movement
D. Influenza : Virus :: Typhoid : IV. Malaria






Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2023 PYQ

Solution

Dog causes Rabies, Mosquito causes Malaria → A-IV
Amnesia affects Memory, Paralysis affects Movement → B-III
Meningitis affects Brain, Cirrhosis affects Liver → C-II
Influenza is caused by Virus, Typhoid is caused by Bacteria → D-I

Correct matching: A-IV, B-III, C-II, D-I

CUET PG MCA PYQ
Given below are two statements:

Statement I:
$\displaystyle \int_{-a}^{a} f(x),dx = \int_{0}^{a} [f(x)+f(-x)],dx$

Statement II:
$\displaystyle \int_{0}^{1} \sqrt{(1+x)(1+x^3)},dx \le \dfrac{15}{8}$

In the light of the above statements, choose the most appropriate answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

Statement I:
This is a standard property of definite integrals.
So Statement I is true.

Statement II:
Using AM ≥ GM:
$(1+x)(1+x^3) \le \left(\dfrac{(1+x)+(1+x^3)}{2}\right)^2$

So,
$\sqrt{(1+x)(1+x^3)} \le \dfrac{2 + x + x^3}{2}$

Integrating from $0$ to $1$:
$\displaystyle \int_0^1 \sqrt{(1+x)(1+x^3)},dx \le \dfrac{15}{8}$

Statement II is true.

CUET PG MCA PYQ
Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R. Assertion A: $\displaystyle \int_{-3}^{3} (x^3+5),dx = 30$ Reason R: $f(x)=x^3+5$ is an odd function. In the light of the above statements, choose the correct answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2023 PYQ

Solution

$\displaystyle \int_{-3}^{3} x^3,dx = 0$ (odd function over symmetric limits) $\displaystyle \int_{-3}^{3} 5,dx = 5 \times 6 = 30$ So, $\displaystyle \int_{-3}^{3} (x^3+5),dx = 30$ ⇒ Assertion A is true. But $x^3+5$ is not an odd function (sum of odd and even function). So Reason R is false.

CUET PG MCA PYQ
If $f(a+b-x)=f(x)$ then $\int ^b_axf(x)dx$ is equal to





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution

We are asked to evaluate

\(\displaystyle I = \int_a^b x f(x)\, dx \quad \text{given } f(a+b-x)=f(x).\)

Step 1: Put substitution \(t=a+b-x\). Then \(dx=-dt\).

When \(x=a \Rightarrow t=b\), when \(x=b \Rightarrow t=a\).

So, \[ I = \int_a^b x f(x)\, dx = \int_b^a (a+b-t) f(t)(-dt) = \int_a^b (a+b-t) f(t)\, dt. \]

Step 2: Add both forms of \(I\):

\[ 2I = \int_a^b [x f(x) + (a+b-x) f(x)] dx = \int_a^b (a+b) f(x)\, dx. \]

Step 3: Simplify:

\[ I = \frac{a+b}{2} \int_a^b f(x)\, dx. \]

Final Answer: \(\displaystyle \frac{a+b}{2}\int_a^b f(x)\, dx\) → matches Option 1.


CUET PG MCA PYQ
Match List – I with List – II
 List - I List - II
 (A) $$\int ^{\pi/2}_0\frac{{\sin }^4x}{{\sin }^4x+{\cos }^4x}dx$$(I) 0
(B) $$\int ^{\pi/3}_{\pi/6}\frac{1}{1+\sqrt[]{\tan x}}dx$$(II) 0
(C) $$\int ^1_0x{e}^xdx$$(III) $\frac{\pi}{12}$
(D) $$\int ^1_{-1}{x}^{109}{\cos }^{88}xdx$$(IV) $\frac{\pi}{4}$
Choose the correct answer from the options given below:





Go to Discussion

CUET PG MCA Previous Year PYQ CUET PG MCA CUET 2024 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...