We are asked to evaluate
\(\displaystyle I = \int_a^b x f(x)\, dx \quad \text{given } f(a+b-x)=f(x).\)
Step 1: Put substitution \(t=a+b-x\). Then \(dx=-dt\).
When \(x=a \Rightarrow t=b\), when \(x=b \Rightarrow t=a\).
So, \[ I = \int_a^b x f(x)\, dx = \int_b^a (a+b-t) f(t)(-dt) = \int_a^b (a+b-t) f(t)\, dt. \]
Step 2: Add both forms of \(I\):
\[ 2I = \int_a^b [x f(x) + (a+b-x) f(x)] dx = \int_a^b (a+b) f(x)\, dx. \]
Step 3: Simplify:
\[ I = \frac{a+b}{2} \int_a^b f(x)\, dx. \]
Final Answer: \(\displaystyle \frac{a+b}{2}\int_a^b f(x)\, dx\) → matches Option 1.
| List - I | List - II |
| (A) $$\int ^{\pi/2}_0\frac{{\sin }^4x}{{\sin }^4x+{\cos }^4x}dx$$ | (I) 0 |
| (B) $$\int ^{\pi/3}_{\pi/6}\frac{1}{1+\sqrt[]{\tan x}}dx$$ | (II) 0 |
| (C) $$\int ^1_0x{e}^xdx$$ | (III) $\frac{\pi}{12}$ |
| (D) $$\int ^1_{-1}{x}^{109}{\cos }^{88}xdx$$ | (IV) $\frac{\pi}{4}$ |
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.