$a'b' + ab + a'b$
$= a'(b' + b) + ab$
$= a' + ab$
$= a' + b$
$\boxed{a' + b \;\; }$
| LIST I | LIST II |
| A. (x+y)' | I. 1 |
| B. x+1 | II. x'+y' |
| C. (xy)' | III. x'.y' |
| D. x+0 | IV. x |
K-map (3 variables: A rows, BC columns in Gray order 00,01,11,10)
| A \ BC | 00 | 01 | 11 | 10 |
|---|---|---|---|---|
| A=0 | 0 | 0 | 1 | 0 |
| A=1 | 1 | 0 | 1 | 1 |
Groupings and terms:
Simplified function: \(F = AB \;+\; AC' \;+\; BC\)
Correct option: 1) BC + AB + AC'
Solution:
(A) \(A + AB = A(1 + B) = A \cdot 1 = A\) (Absorption law) ✅
(B) \((A + B)' = A'B'\) (De Morgan’s law: complement of sum is product of complements) ✅
(C) \((A')' = A\) (Double complement law) ✅
(D) \((AB)' = A' + B'\) (De Morgan’s law: complement of product is sum of complements) ✅
Final Answer: All are true — (A), (B), (C), (D).
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.