Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MAH CET MCA Previous Year Questions (PYQs)

MAH CET MCA Rectangular Cartesian Coordinates PYQ


MAH CET MCA PYQ
The perpendicular distance of the point $P(1,2,3)$ from the line $\dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}$ is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Line passes through $A(6,7,7)$ with direction $\vec v=\langle3,2,-2\rangle$. $\vec{AP}=\langle-5,-5,-4\rangle$. Distance $=\dfrac{\lVert \vec{AP}\times\vec v\rVert}{\lVert\vec v\rVert}=\dfrac{\sqrt{833}}{\sqrt{17}}=\sqrt{49}=7$.

MAH CET MCA PYQ
The projections of a line segment on the $X,Y,Z$ axes are $12,4,3$ respectively. The length and direction cosines are





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Components are $(12,4,3)$. Length $L=\sqrt{12^2+4^2+3^2}=13$. Direction cosines $=\left(\dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}\right)$.

MAH CET MCA PYQ
If $A(cos\alpha, sin\alpha)$, $B(sin\alpha, -cos\alpha)$, C(1,2) are the vertices of a $\Delta ABC$, then as $\alpha$ varies, the the locus of its centroid is, 





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution


MAH CET MCA PYQ
The points (a: b) , (c, d) and $\frac{kc+la}{k+l}$,$\frac{kd+lb}{k+l}$ are 





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution



MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...