Line passes through $A(6,7,7)$ with direction $\vec v=\langle3,2,-2\rangle$.
$\vec{AP}=\langle-5,-5,-4\rangle$. Distance $=\dfrac{\lVert \vec{AP}\times\vec v\rVert}{\lVert\vec v\rVert}=\dfrac{\sqrt{833}}{\sqrt{17}}=\sqrt{49}=7$.
If $A(cos\alpha, sin\alpha)$, $B(sin\alpha, -cos\alpha)$, C(1,2) are the vertices of a $\Delta ABC$, then as $\alpha$ varies, the the locus of its centroid is,