Let numbers be $a, b$.
Then $\dfrac{x}{y} = \dfrac{\sqrt{ab}}{\dfrac{2ab}{a+b}} = \dfrac{a+b}{2\sqrt{ab}} = \dfrac{5}{4}$.
Let $\dfrac{a}{b} = r$,
then $\dfrac{r+1}{2\sqrt{r}} = \dfrac{5}{4}$.
On solving, $r = 4$ or $\dfrac{1}{4}$.
Hence ratio = $1:4$.
Sum of squares of first $n$ odd numbers $= \dfrac{n(2n-1)(2n+1)}{3}$.
For $n = 50$, sum $= \dfrac{50 \times 99 \times 101}{3} = 166650$.
Hence, it lies between $150000$ and $250000$.