Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MAH CET MCA Previous Year Questions (PYQs)

MAH CET MCA Differential Equation PYQ


MAH CET MCA PYQ
A company models the rate of change of concentration by $(y^2+3xy),dx+(x^2+xy),dy=0$, with $y=1$ when $x=1$. Find $y$ as a function of $x$ (choose the correct option).





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Put $y=vx$. Then $v+x,dv/dx=-\dfrac{v(v+3)}{1+v}$. $\displaystyle \frac{1+v}{v(v+2)},dv=-\frac{2,dx}{x} \Rightarrow \ln!\big(v(v+2)\big)=-4\ln x+C$. $\Rightarrow v(v+2)=\dfrac{C}{x^{4}}$. Using $(x,y)=(1,1)$ gives $C=3$. $\displaystyle \therefore \frac{y}{x}!\left(\frac{y}{x}+2\right)=\frac{3}{x^{4}} \Rightarrow y=y(x)=x!\left(-1+\sqrt{1+\frac{3}{x^{4}}}\right)$ (positive branch by IC).$\boxed{y=x!\left(-1+\sqrt{1+\dfrac{3}{x^{4}}}\right)}$

MAH CET MCA PYQ
A family of parabolas $y=ax^{2}$ $(a>0)$ has vertices on the $x$–axis and axis parallel to $y$–axis. The differential equation of this family is:





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

$y=ax^{2}$, $a=\dfrac{y}{x^{2}}$. Differentiate: $y'=2ax=\dfrac{2y}{x}$. $\Rightarrow x,y'-2y=0$.

MAH CET MCA PYQ
Given $,\dfrac{dy}{dx}+y=1,$ with $y(0)=2$, find $y(1)$.





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2025 (Shift 1) PYQ

Solution

Solve linear ODE: $y=Ce^{-x}+1$. Using $y(0)=2\Rightarrow C=1$. So $y(1)=e^{-1}+1$.

MAH CET MCA PYQ
The differential equation of the family of curves $y=e^x(A cos⁡x+B sin⁡x)$, where A and B are arbitrary constants, is





Go to Discussion

MAH CET MCA Previous Year PYQ MAH CET MCA MAH MCA CET 2024 PYQ

Solution




MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MAH CET MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...