Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Inverse Trigonometrical Function PYQ


NIMCET PYQ
The value of 
2tan-1[cosec(tan-1x) - tan(cot-1x)]





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
If n1 and n2 are the number of real valued solutions x = | sin–1 x | & x = sin (x) respectively, then the value of n2– n1 is





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
If $ \theta = \tan^{-1}\dfrac{1}{1+2} + \tan^{-1}\dfrac{1}{1+2\cdot3} + \tan^{-1}\dfrac{1}{1+3\cdot4} + \ldots + \tan^{-1}\dfrac{1}{1+n(n+1)} $, then $\tan\theta$ is equal to:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2009 PYQ

Solution

We use identity $\tan^{-1}a - \tan^{-1}b = \tan^{-1}\dfrac{a-b}{1+ab}$ 
Here each term satisfies 
$\tan^{-1}\dfrac{1}{1+k(k+1)} = \tan^{-1}(k+1) - \tan^{-1}(k)$ 
 So the series telescopes: 
$\theta = \tan^{-1}(n+1) - \tan^{-1}(1)$ 
 Thus 
$\tan\theta = \dfrac{(n+1)-1}{1+(n+1)(1)} = \dfrac{n}{n+2}$

NIMCET PYQ
If $\sin^{-1}x + \cos^{-1}(1-x) = \sin^{-1}(1-x)$ then $x$ satisfies the equation:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2009 PYQ

Solution

Simplifying the given inverse–trigonometric equation gives: $2x^2 - 3x = 0$

NIMCET PYQ
The value of $\cot^{-1}(21) + \cot^{-1}(13) + \cot^{-1}(-8)$ is:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2012 PYQ

Solution

Use identity for inverse cotangent: 
$\cot^{-1}a + \cot^{-1}b = \cot^{-1}\left(\dfrac{ab - 1}{a + b}\right)$ 
Apply to the first two terms: 
$\cot^{-1}(21) + \cot^{-1}(13)$ 
$= \cot^{-1}\left(\dfrac{21 \cdot 13 - 1}{21 + 13}\right)$ 
$= \cot^{-1}\left(\dfrac{273 - 1}{34}\right)$ 
$= \cot^{-1}\left(\dfrac{272}{34}\right)$ 
$= \cot^{-1}(8)$ 
Now the expression becomes: 
$\cot^{-1}(8) + \cot^{-1}(-8)$ 
But we know: $\cot^{-1}(x) + \cot^{-1}(-x) = \pi$ 
So, $\cot^{-1}(8) + \cot^{-1}(-8) = \pi$
$\therefore$ The value is $\pi$.

NIMCET PYQ
If $\tan^{-1}(2x) + \tan^{-1}(3x) = \dfrac{\pi}{4}$, then $x$ is:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2009 PYQ

Solution

Use formula: $\tan^{-1}a + \tan^{-1}b = \tan^{-1}\left(\dfrac{a+b}{1-ab}\right)$ 
So: $\tan^{-1}\left(\dfrac{2x+3x}{1 - 6x^2}\right) = \dfrac{\pi}{4}$ 
Thus: $\dfrac{5x}{1 - 6x^2} = 1$ 
Solve: $5x = 1 - 6x^2$ 
$6x^2 + 5x - 1 = 0$ 
 Quadratic gives roots: $x = \dfrac{1}{3}$ or $x = -\dfrac{1}{2}$

NIMCET PYQ
Number of solutions for $\tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2 + x + 1} = \dfrac{\pi}{2}$ is:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2009 PYQ

Solution

Both square-root expressions must be real. 
Domain 1: $x(x+1) \ge 0 \Rightarrow x \le -1 \text{ or } x \ge 0$ 
Domain 2: $x^2 + x + 1 > 0$ for all $x$ (always positive) 
Equation transforms into identity impossible to satisfy over real domain. 
Therefore no real solution.

NIMCET PYQ
If $f(x)=tan^{-1}\left [ \frac{sinx}{1+cosx} \right ]$ , then what is the first derivative of $f(x)$?





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2013 PYQ

Solution


NIMCET PYQ
The correct expression for $cos^{-1} (-x)$ is





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2022 PYQ

Solution

You should learn it as an important formula.

NIMCET PYQ
The value of $\cot \Bigg{(}{cosec}^{-1}\frac{5}{3}+{\tan }^{-1}\frac{2}{3}\Bigg{)}$ is





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
Solutions of the equation ${\tan }^{-1}\sqrt[]{{x}^2+x}+{\sin }^{-1}\sqrt[]{{x}^2+x+1}=\frac{\pi}{2}$ are





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
If $cos^{-1} \frac{x}{2}+cos^{-1} \frac{y}{3}=\phi$, then $9x^2-12xy cos\phi+4y^2$ is





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
If  +  =  , then 






Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2017 PYQ

Solution


NIMCET PYQ
The value of A that satisfies the equation asinA + bcosA = c is equal to






Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2017 PYQ

Solution

Let

$R = \sqrt{a^2 + b^2}$

Choose $\theta$ such that

$\cos \theta = \frac{b}{R}, \quad \sin \theta = \frac{a}{R}$

Then

$a\sin A + b\cos A = R(\sin A \sin \theta + \cos A \cos \theta) = R\cos(A - \theta)$

Given that

$a\sin A + b\cos A = c,$

we get

$R\cos(A - \theta) = c \quad \Rightarrow \quad \cos(A - \theta) = \frac{c}{\sqrt{a^2 + b^2}}$

Hence,

$A - \theta = \pm \cos^{-1}\!\left(\frac{c}{\sqrt{a^2 + b^2}}\right) + 2\pi n, \quad n \in \mathbb{Z}$

and since $\tan \theta = \dfrac{a}{b}$, we have $\theta = \tan^{-1}\!\left(\dfrac{a}{b}\right)$

Therefore,

$\boxed{A = \tan^{-1}\!\left(\frac{a}{b}\right) \pm \cos^{-1}\!\left(\frac{c}{\sqrt{a^2 + b^2}}\right)}$


NIMCET PYQ
Find the principal value of  is






Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2017 PYQ

Solution


NIMCET PYQ
If $\sin^{-1}\frac{2a}{1+a^2} - \cos^{-1}\frac{1-b^2}{1+b^2} = \tan^{-1}\frac{2x}{1-x^2}$ then $x$ equals:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2010 PYQ

Solution

$\sin^{-1}\frac{2a}{1+a^2} = 2\tan^{-1} a$ $\cos^{-1}\frac{1-b^2}{1+b^2} = 2\tan^{-1} b$ So equation becomes: $2\tan^{-1} a - 2\tan^{-1} b = \tan^{-1}\frac{2x}{1-x^2}$ Use identity: $\tan^{-1}u - \tan^{-1}v = \tan^{-1}\frac{u-v}{1+uv}$ Thus $2\tan^{-1}\frac{a-b}{1+ab} = \tan^{-1}\frac{2x}{1-x^2}$ This gives: $x=\frac{a-b}{1+ab}$

NIMCET PYQ
The value of  is





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2018 PYQ

Solution


NIMCET PYQ
The value of $sin^{-1}\frac{1}{\sqrt{2}}+sin^{-1}\frac{\sqrt{2}-\sqrt{1}}{\sqrt{6}}+sin^{-1}\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}+...$ to infinity , is equal to





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2015 PYQ

Solution



NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...