Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Inequation PYQ


NIMCET PYQ
Find least integer $k$ such that $(k-2)x^2 + k + 8x + 4 > 0$ for all $x\in\mathbb{R}$.





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2011 PYQ

Solution

For quadratic $ax^2+bx+c>0$ for all $x$: $a>0$ → $k-2>0$ → $k>2$ Discriminant $<0$ $D=b^2-4ac=8^2-4(k-2)(k+4)$ Compute: $D=64-4(k^2+2k-8)=64-4k^2-8k+32$ $D=96-4k^2-8k<0$ Divide by $-4$: $k^2+2k-24>0$ $(k+?)(k+?)$ → roots $4$ and $-6$ So $k>4$ or $k<-6$ Combine with $k>2$ ⇒ $k>4$ Least integer = $5$

NIMCET PYQ
If $x < -1$ and $2^{|x+1|} - 2^x = |2x - 1| + 1$ then the value of $x$ is:





Go to Discussion

NIMCET Previous Year PYQ NIMCET NIMCET 2009 PYQ

Solution

Since $x < -1$, then 
$|x+1| = -(x+1)$ and $|2x - 1| = -(2x - 1)$ because $2x - 1 < -3 < 0$. 
Equation: $2^{-(x+1)} - 2^x = -(2x - 1) + 1$ 

Right side: $-2x + 1 + 1 = -2x + 2$ 
Left side: $2^{-(x+1)} = \dfrac{1}{2^{x+1}}$ 

Try $x = -2$: 
LHS: $2^{ -(-2+1) } - 2^{-2} = 2^{1} - \dfrac{1}{4} = 2 - 0.25 = 1.75$ 
RHS: $-2(-2) + 2 = 4 + 2 = 6$ → not equal Try $x = -2$ again carefully: Wait — check systematically. Better approach: substitute $x=-2$ in original equation: Left side: $2^{| -2 + 1 |} - 2^{-2} = 2^{1} - \dfrac{1}{4} = \dfrac{7}{4}$ Right side: $|2(-2) - 1| + 1 = | -5 | + 1 = 6$ Not equal → reject. Try $x = -1.5$ type pattern? Better substitute only options (valid since only one option has $x< -1$): Only option with $x < -1$ is (1) −2. But we tested −2 and it doesn't satisfy? Check original equation carefully: Original: $2^{|x+1|} - 2^x = |2x - 1| + 1$ Try $x=-2$ again: Left: $2^{|-2+1|} - 2^{-2} = 2^{1} - \dfrac{1}{4} = \dfrac{7}{4}$ Right: $|2(-2)-1| + 1 = |-5| +1 = 6$


NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...